
Research Statement

Fundamental Mathematical Tools on the Path to AGI
Amazing advances over the last many years have brought us to a place where the community is moving
its focus from artificial intelligence or AI to artificial general intelligence or AGI. While many definitions
exist, the following is the most interesting distinction to me between AI and AGI – In AI, we were focused
on building systems that could perform a single skill (such as classifying images, predicting sentiment,
playing specific games) given enough data and computational resources; the focus of AGI is (or should be
in my opinion) to build systems that can acquire new skills efficiently both in terms of computational and
data resources. This is especially relevant in scientific domains where data collection can be extremely
expensive, both in terms of monetary costs and manual effort. The paradigm shift from AI to AGI re-
quires the core problem of “learning a skill” to evolve into the problem of “learning to acquire new skills
efficiently”.

The “Bitter Lesson” in AI1 is that, up until now, simplistic models, equipped with lots of data and
brute-force computation, will often beat more sophisticated models. Motivated by this Bitter Lesson, there
is significant effort in building “large” models utilizing the computational power of big compute clusters
and all the data available on the internet, and this has demonstrated varying degrees of successes in AGI.
Unfortunately, these massive requirements are leading us to societal problems where computation and
data at this scale is only available to a few, leading to a form of tech-oligarchy, and we are progressively
consuming more fossil fuels at a time when we need to be more strategic in our power consumption.
Furthermore, at a time when the compute hardware is unable to keep up with the computation needs
of the AI community in this post Moore’s Law world2, it seems counterproductive to utilize compute
blindly to improve performance – this might be the final endgame of brute-force computation, and we
need to reassess the bitter lesson. The primary pursuit of my research is to demonstrate similar or better AGI
capabilities much more efficiently (both in terms of computation and data) without the current practice of prohibitive
(and possibly wasteful) use of resources. With this goal, I focus my research on the following three high-level
questions in this new paradigm:
• What are the right optimization objectives for this learning problem, and how can we solve these

optimization problems efficiently?
• What are the right types of models for this paradigm and how big do these models really need to be?
• How can we leverage the inherent structure in the data to reduce the training data requirements?
I will briefly elaborate on each of these questions, and my research along these lines in the following.

What is the right learning objective?
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Figure 1: Learning a skill

Given a set of training examples, the standard practice in AI for “learning
a skill” involves selecting a class of models and a loss function, and start-
ing from some initial model in that class, performing the following steps
iteratively until some stopping criteria (such as computational budget or de-
sired accuracy) is triggered: (i) Predict on (a subset of) the training data,
(ii) Compute the loss on these predictions, and (iii) Update the current model
to reduce this loss. This general procedure (depicted in Fig 1) is applicable
to differentiable models such as neural networks, where the model update utilizes some form of gra-
dient descent, as well as to more discrete models such as decision trees and program synthesis, where
the model update utilizes combinatorial search. Regularization is often used to subvert overfitting to
the training data, but can be achieved explicitly with the choice of the model class or loss functions, or
implicitly through specific model update procedures. This “predict, compute loss, update model” cycle
finally produces a model for the particular skill at hand, and the goal is to ensure that this model gen-
eralizes on unseen examples. Given enough training examples, expressive enough models, and sufficient
computational resources, this procedure has been quite successful.

However, it is not clear how this procedure is directly applicable to the problem of “learning to acquire
new skills”. Standard approach has been to train a large (often autoregressive) model with a large and
varied training data (corresponding to a variety of skills) and some auxilliary loss functions (such as next-
token prediction). These models are then fine-tuned for a variety of tasks (such as safety alignment) via
techniques such as reinforcement learning or preference optimization on specialized data (such as human
feedback, chains of thought). For any new skill, the skill acquisition step can involve (i) fine-tuning (with
adaptors like LoRA) if enough skill-specific data is available, (ii) in-context learning where skill-specific
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data is part of the input to the model, and (iii) test-time scaling where the model generates multiple
outputs (potentially recursively).
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Figure 2: Learning to ac-
quire new skills

Yet, this staged approach with (often hand-crafted) stage-specific data and
loss functions does not directly fit in the tried-and-tested “predict, compute
loss, update model” cycle for the problem of “learning to acquire new skills”.
Given a set of skills (and available skill-specific data), an alternate learning
process could extend the above cycle to “acquire skill & predict, compute loss,
update model” (see Fig 2), where the “predict” step (in traditional learning)
is replaced with a step where the model first acquires the skill, and then
makes subsequent skill specific predictions to compute the loss. As the skill
acquisition itself is often a mini-learning problem (see the smaller red loop in Fig 2), it makes the overall
learning process a bilevel optimization problem where the outer level problem is to learn to acquire new skills
while the inner level problem is the acquistion of specific skills. Bilevel optimization is closely related
to Stackelberg games, and their solutions often correspond to a perfect Nash Equilibria of a specific
game. While general bilevel optimization is an extremely challenging problem, I have already shown
various applications of it in AI and machine learning such as meta-learning3;4, representation learning5,
hyperparameter optimization6–10, model pruning11, clustering12, unlearning13;14 and many more15;16. In
addition to appropriately addressing and leveraging the bilevel nature of the problem, skill generalization
– ability to generalize to unseen new skills – requires our explicit attention. In our paper Min-max Multi-
objective Bilevel Optimization with Applications in Robust Machine Learning, we provide preliminary
theoretical and empirical evidence which demonstrate that robust multi-objective bilevel optimization17;18 is
one way to promote generalization to unseen skills.

I believe that bilevel optimization provides a powerful framework for the path to AGI as it natively
allows expression of a lot of “meta” processes necessary for AGI, and one goal of my research is to
scale bilevel optimization (and its robust multi-objective variants) to levels comparable to standard
single-level optimization via the ubiquitous yet simple stochastic gradient descent (SGD) & its variants.

What are the right models?
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Figure 3: 2 digit
multiplication

The current trend in AI is to build larger and larger models (or “scale up”) with the
promise of better expressivity. Models are made deeper to endow them with more levels
of information processing, which is useful for acquiring and predicting for harder skills.
However, the processing depth of these models are fixed, regardless of the hardness of
the problem at hand, which inevitably results in a push to build deeper and deeper
models as we want these models to be ready to solve hard problems. I believe this trend
of larger models is not sustainable and also not necessary (as evidenced with various
distilled versions of these models that are orders of magnitude smaller and yet equally
capable). In contrast, there are models in literature such as those depending on a parse
tree (implicitly or explicitly19) for natural language processing, and energy based models (utilizing some
form of fixed-point iterations), that adapt the prediction/inference processing time to the input without
increasing the size of the model – larger/harder problems requiring more recursive processing (compare the
number of steps in 2-digit multiplication in Fig 3 to that in the harder 3-digit multiplication in Fig 4).
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Figure 4: 3 digit
multiplication

Associative Memory networks, one of the very first “neural networks” (which were
recently recognized with the 2024 Nobel Prize in Physics), and their modern variant
Dense Associative Memories20 are one such class of energy-based models, where the
models are parameterized with “memory vectors” and the prediction process performs
a gradient descent over an energy function, with harder inputs requiring more descent
steps, thereby being adaptive to the input. The expressivity of these models are tied
to their “memory capacity”, with larger capacity implying more expressivity but also
larger models (as the model size scales linearly with the number of memories), and
scaling up to exponential (in the input dimension) memory capacity guarantees uni-
versal approximation with an exponentially large model. Utilizing techniques from
Fourier analysis and kernel methods, and leveraging the underlying problem structure,
we disentangle the model size from the number of memories21 in our paper Dense As-
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sociative Memories Through the Lens of Random Features, demonstrating that there are ways to have
the capabilities of a large model without having to scale up the actual model.

I believe that such models will be very useful on the path to AGI, and another goal of my research is
to utilize core mathematical tools to develop such models with extremely favorable size-expressivity
trade-offs, thereby significantly reducing the computational overhead of training and predicting with
these models.

How to reduce training data requirements?
As the large models are being trained on troves of data – openly available, proprietary, human generated,
model generated and human evaluated – the computational costs have become prohibitive as have the
data requirements. Furthermore, to improve the performance of these models on reasoning tasks, more
and more prompt augmentation data (such as derivation traces) are generated for training. However,
most problems (including reasoning ones) often have a hierarchical compositional structure (albeit often
not entirely explicit) – “the meaning of the whole is a function of the meanings of the parts and of the way they are
syntactically combined”. Examples includes problems with a grammar based language, mathematical oper-
ations such as long addition or long multiplication (see Figs 3 & 4 where the final solution is hierarchically
built up utilizing single digit multiplication, multiplication by 10, and long addition), and any reasoning
tasks based on (implicit or explicit) algebraic expressions22. In such problems, the answer is often built up
recursively with longer/harder problems requiring deeper recursions, highlighting the aforementioned
need for models that can adapt to the hardness of the problem at hand. The compositional structure
allows us to solve different or harder problems by breaking the problem into smaller easier known pieces,
and solving these easier problems based on our learning. Compositional generalization is a core tenet of
cognitive science developed by linguists, and a key to the ability of humans to learn from extremely small
number of examples. Of course, it is not necessary that AGI models solve problems in the same way as
we humans tackle them. However, this inherent compositional structure, if properly leveraged, allows us
break each example problem into multiple (easier to learn) problems, thereby both reducing the hardness
of what needs to be learned, and providing more examples to learn these easier problem from. This also
requires us to learn how to break problems up and put solutions back together hierarchically, which is
nontrivial.

A first step towards leveraging this compositional structure is formally characterizing this notion,
something absent in the literature. We present on novel and precise characterization in our paper23 What
makes Models Compositional? A Theoretical View. We explicitly tease out the different factors affecting
the compositional complexity of general functions, and of standard AI models such as recurrent and convolu-
tional neural networks, and transformers. The results highlight that most existing models have extremely
high compositional complexity disincentivizing these models from learning simple compositional func-
tions, yet, these same models lack the adaptivity that is necessary to learn the underlying compositional
structure – these models end up learning complex functions to fit the training data as they lack the expres-
sivity to break the problems up into (problem-dependent) simpler pieces – a somewhat counterintuitive
result. Based on this theoretical study, we develop simple inductive biases that allow these off-the-shelf
models (such as transformers) to learn reasoning tasks significantly faster with far few examples than the
standard counterparts while achieving the same level of generalization24.

I believe that this inherent, though implicit, compositional structure of many problems can signif-
icantly reduce the data requirements on the path to AGI, and a goal of my research is to develop
models and training procedures that are able to leverage this structure, thereby reducing both the
amount of data needed as well as the associated computational costs of processing such data.

Further Research Interests
I have a wide range of research interests, and I am always excited to learn about new topics and make
connections between different areas. In this process, I have spent time focusing on the following areas:
Optimization (single and bilevel), Automated Machine Learning & Data Science, Large Scale Learning,
Computational Geometry, Efficient All-Pairs Algorithms & Analysis, Density Estimation, Kernel Methods,
Associative Memories & Energy-based Models, Machine Unlearning, Sparse Learning, Neuro-inspired
Learning, Compositional Generalization. Please see my resume here.
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