

How Compositional is a Model?

Parikshit Ram, Tim Klinger, Alexander Gray **IBM Research**

Context

- **Compositional Generalization is important** in (sequence) learning tasks
- Existing benchmarks **empirically** demonstrate the **lack of compositional generalization** of existing off-the-shelf models
 - With the understanding that these models are not "compositional"

- What does it mean to be **compositional**?
- Why are some models compositional while others are not?

- What does it mean to be **compositional**?
- Why are some models compositional while others are not?

- General definition & framework for studying compositional models
- Definition of **compositional complexity**
- Demonstrate how existing models fit this framework, and how they compare against each other

• How do these definitions of compositionality and compositional complexity

relate to guarantees for compositional generalization?

• How do these definitions of compositionality and compositional complexity

WIP

relate to guarantees for compositional generalization?

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

Partee, Barbara. "Lexical semantics and compositionality." An invitation to cognitive science: Language 1 (1995): 311-360.

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

$$\mu(\alpha(u_1,\ldots,u_n))=r_\alpha(\mu(u_1),\ldots,\mu(u_n))$$

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

meaning function
$$\mu(\alpha(u_1,\ldots,u_n)) = r_{\alpha}(\mu(u_1),\ldots,\mu(u_n))$$

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

meaning function
$$\mu(\alpha(u_1, \dots, u_n)) = r_\alpha(\mu(u_1), \dots, \mu(u_n))$$
rule sub-terms

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

meaning
function
$$\mu(\alpha(u_1, \dots, u_n)) = r_{\alpha}(\mu(u_1), \dots, \mu(u_n))$$
rule sub-terms rule-dep
function

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

meaning
function
$$\mu(\alpha(u_1, \dots, u_n)) = r_{\alpha}(\mu(u_1), \dots, \mu(u_n))$$
rule sub-terms rule-dep meanings of
function the sub-terms

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

$$\begin{array}{l} \mbox{meaning}\\ \mbox{function} \end{array} \quad \mu(\alpha(u_1,\ldots,u_n)) = r_\alpha(\mu(u_1),\ldots,\mu(u_n))\\ \mbox{rule sub-terms} \qquad \mbox{rule-dep meanings of}\\ \mbox{function the sub-terms} \end{array} \quad \mbox{Recursive}$$

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

$$\begin{array}{l} \mbox{meaning}\\ \mbox{function} \end{array} \quad \mu(\alpha(u_1,\ldots,u_n)) = r_\alpha(\mu(u_1),\ldots,\mu(u_n)) \\ \mbox{rule sub-terms} \qquad \mbox{rule-dep} \qquad \mbox{meanings of}\\ \mbox{function} \qquad \mbox{the sub-terms} \end{array} \quad \mbox{Recursive}$$

Any meaning function can be shown to have compositional semantics

Partee, Barbara. "Lexical semantics and compositionality." *An invitation to cognitive science: Language* 1 (1995): 311-360. Pagin, Peter, and Dag Westerståhl. "Compositionality I: Definitions and variants." *Philosophy Compass* 5.3 (2010): 250-264. Zadrozny, Wlodek. "From compositional to systematic semantics." *Linguistics and philosophy* 17 (1994): 329-342.

- *Token encoder*: Encodes input tokens in latent space
 - Can handle positional encoding

$$e:\mathcal{I}\times\mathbb{N}\to\mathcal{H}$$

- *Token encoder*: Encodes input tokens in latent space
 - Can handle positional encoding
- *Span processor*: Processes sequence spans
 - Can itself be a collection of functions

$$g:\mathcal{H}^k\to\mathcal{H}$$

Components of a compositional model for sequences:

- *Token encoder*: Encodes input tokens in latent space
 - Can handle positional encoding
- *Span processor*: Processes sequence spans
 - Can itself be a collection of functions
- Computational DAG function: The processing hierarchy $D: \mathcal{X} \to \mathcal{D}$ (the space of DAGs).
 - The trace of a **program** processing the sequence
 - Can be input-dependent

 $e:\mathcal{I}\times\mathbb{N}\to\mathcal{H}$

$$g:\mathcal{H}^k\to\mathcal{H}$$

KBCG @ IJCAI 2023 / Macao / © 2023 IBM Corporation

- *Token encoder*: Encodes input tokens in latent space
 - Can handle positional encoding
- *Span processor*: Processes sequence spans
 - Can itself be a collection of functions
- Computational DAG function: The processing hierarchy $D: \mathcal{X} \to \mathcal{D}$ (the space of DAGs).
 - The trace of a **program** processing the sequence
 - Can be input-dependent
- *Read-out function*: Outputs the final "meaning"
 - The label can be class, target or next-token

$$e:\mathcal{I}\times\mathbb{N}\to\mathcal{H}$$

$$g:\mathcal{H}^k\to\mathcal{H}$$

$$h:\mathcal{H}^m\to\mathcal{Y}$$

Components of a compositional model for sequences:

- Token encoder $e: \mathcal{I} \times \mathbb{N} \to \mathcal{H}$
- Span encoder
- Computational DAG function
- Read-out function

 $g: \mathcal{H}^k \to \mathcal{H}$ $D: \mathcal{X} \to \mathcal{D}$ (the space of DAGs)

$$h:\mathcal{H}^m\to\mathcal{Y}$$

Components of a compositional model for sequences:

- Token encoder $e: \mathcal{I} \times \mathbb{N} \to \mathcal{H}$
- Span encoder $g:\mathcal{H}^k \to \mathcal{H}$
- Computational DAG function
- Read-out function

 $g: \mathcal{H}^k \to \mathcal{H}$ $D: \mathcal{X} \to \mathcal{D}$ (the space of DAGs).

 $h:\mathcal{H}^m\to\mathcal{Y}$

Compositional function:
$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

Components of a compositional model for sequences:

- Token encoder $e: \mathcal{I} \times \mathbb{N} \to \mathcal{H}$
- Span encoder $g:\mathcal{H}$
- Computational DAG function
- Read-out function

 $g: \mathcal{H}^k o \mathcal{H}$ $D: \mathcal{X} o \mathcal{D}$ (the space of DAGs)

 $h:\mathcal{H}^m\to\mathcal{Y}$

Compositional function:
$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

Recursive application of the span encoder over the computational DAG Compositional Model: Example

$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

$$X = [x_1, \dots, x_5] \\ e_i = e(x_i, i) \in \mathcal{H} \\ f(X) = h(g(e_1, e_2), g(g(e_3, e_4), e_5))$$

KBCG @ IJCAI 2023 / Macao / © 2023 IBM Corporation

Compositional Model: Another Example

$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

Compositional Models

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

Compositional Models

The meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

- Token encoder $e: \mathcal{I} \times \mathbb{N} \to \mathcal{H}$
- Span encoder

$$g:\mathcal{H}^k
ightarrow\mathcal{H}$$

- Computational DAG function
- Read-out function $h:\mathcal{H}^n$

$$D: \mathcal{X} \to \mathcal{D}$$
 (the space of DAGs

$$h:\mathcal{H}^m\to\mathcal{Y}$$

Compositional function:
$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

Components of a compositional model for sequences:

- Token encoder $e: \mathcal{I} \times \mathbb{N} \to \mathcal{H}$
- Span encoder
- Computational DAG function

 $q:\mathcal{H}^k
ightarrow\mathcal{H}$

 $D: \mathcal{X} \to \mathcal{D}$ (the space of DAGs)

• Read-out function $h:\mathcal{H}^m \to \mathcal{Y}$

Compositional function:
$$f(X) = h\left(g^{\otimes D(X)}(e(x_1, 1), \dots, e(x_L, L))\right)$$

Is this an interesting class of models?

Recurrent Models fit this Framework

 $h(g(g(e_1, e_2), g(e_3, e_4))))$

Convolutional Models fit this Framework

Convolutional Models fit this Framework

Multi-layered Models fit this Framework

Multi-layered Models fit this Framework

Multi-layered Fully-Connected w/ sparse or hard top-K attention

Model Comparison

Compositional Model	Arbitrary Length Operation	Input-dependent cDAG
Unidirectional recurrence	\checkmark	×
Bidirectional recurrence	\checkmark	
Tree recurrence	\checkmark	
Convolution-then-pooling	\checkmark	**
Multi-layered fully-connected		
Multi-layered FC w/ sparse / hard attention		\checkmark

Locus of Influence or LoI of source node

- Encodes complexity of span encoder & cDAG
- Quantifies sensitivity of function output to

changes in specific input tokens

- Absolute LoI measures absolute sensitivity
- Relative LoI measures how sensitive a source

Locus of Influence or LoI of source node

- Encodes complexity of span encoder & cDAG
- Quantifies sensitivity of function output to changes in specific input tokens
- Absolute LoI measures absolute sensitivity
- Relative LoI measures how sensitive a source

Locus of Influence or LoI of source node

- Encodes complexity of span encoder & cDAG
- Quantifies sensitivity of function output to changes in specific input tokens
- Absolute LoI measures absolute sensitivity
- Relative LoI measures how sensitive a source

Locus of Influence or LoI of source node

- Encodes complexity of span encoder & cDAG
- Quantifies sensitivity of function output to changes in specific input tokens
- Absolute LoI measures absolute sensitivity
- Relative LoI measures how sensitive a source

Locus of Influence or LoI of source node

- Encodes complexity of span encoder & cDAG
- Quantifies sensitivity of function output to changes in specific input tokens
- Absolute LoI measures absolute sensitivity
- Relative LoI measures how sensitive a source

Compositional Function Class

Class of Compositional Functions: Functions in this class have a bounded absolute & relative LoI for any input sequence and corresponding source nodes in the cDAG

- Small bounds on absolute & relative LoI imply **simple compositional functions**
- Large absolute LoI & small relative LoI imply extremely complex compositional functions
- (Moderately) large absolute LoI & large relative LoI imply functions allow some tokens in the input sequence to have a lot of influence, but most tokens have simple compositional structure

Model Comparison

Model	Absolute LoI	Relative LoI
Unidirectional recurrence	c^{L-1}	1/2
Bidirectional recurrence	c^{L-1}	1/4
Tree recurrence	$c^{\log L}$	1/L
Convolution-then-pooling	$c^{\log L}$	$\frac{2}{L(1+\frac{1}{p})}$
Multi-layered fully-connected	$(Lc)^M$	1/L
Multi-layered fully-connected w/ sparse/hard attention	$L(Kc)^{N}$	I $1/K$

$$\Delta \triangleq \max_{\substack{D,g,h,\\f:=\{e,D,g,h\},\\f\in\mathcal{F},\\X\in\mathcal{X}}} \min_{\substack{\hat{\mathbf{D}},\hat{g},\hat{h},\\\hat{f}:=\{e,\hat{\mathbf{D}},\hat{g},\hat{h}\},\\f\in\mathcal{F}}} \left| h(g^{\otimes D(X)}(e(x_1),\ldots,e(x_L)) - \hat{h}(\hat{g}^{\otimes \hat{\mathbf{D}}}(e(x_1),\ldots,e(x_L)) \right|$$

$$\Delta \triangleq \max_{\substack{D,g,h,\\f:=\{e,D,g,h\},\\f\in\mathcal{F},\\X\in\mathcal{X}}} \min_{\substack{\hat{\mathbf{D}},\hat{g},\hat{h},\\\hat{f}:=\{e,\hat{\mathbf{D}},\hat{g},\hat{h}\},\\f\in\mathcal{F}}} \frac{h(g^{\otimes D(X)}(e(x_1),\ldots,e(x_L)) - \hat{h}(\hat{g}^{\otimes \hat{\mathbf{D}}}(e(x_1),\ldots,e(x_L)))}{h(g^{\otimes \hat{\mathbf{D}}}(e(x_1),\ldots,e(x_L)))}$$

$$\Delta \triangleq \max_{\substack{D,g,h,\\f:=\{e,D,g,h\},\\f\in\mathcal{F},\\X\in\mathcal{X}}} \min_{\substack{\hat{\mathbf{D}},\hat{g},\hat{h},\\\hat{f}:=\{e,\hat{\mathbf{D}},\hat{g},\hat{h}\},\\f\in\mathcal{F}}} \left| h(g^{\otimes D(X)}(e(x_1),\dots,e(x_L)) - \hat{h}(\hat{g}^{\otimes \hat{\mathbf{D}}}(e(x_1),\dots,e(x_L)) \right|$$

$$C_l \delta \leq \Delta \leq C_u \frac{\delta}{\beta} \qquad \text{Absolute LoI}$$
Relative LoI

How well can a compositional function with an input-agnostic cDAG approximate a compositional function (of same complexity) with input-dependent cDAGs?

Absolute LoI

Relative LoI

Input-agnostic cDAG cannot sufficiently approximate input-dependent cDAGs

- More complex the composition, the worse the approximation
- Lower absolute LoI allows for better approximation
- For same absolute LoI, higher relative LoI allows for better approximation
- Models with input-dependent cDAGs can be more expressive than models with input-agnostic cDAGs

Quantifying Systematic Generalization

Systematic generalization is often described as being able to "handle unknown combination of known parts"

Quantifying Systematic Generalization

Systematic generalization is often described as being able to "handle unknown combination of known parts"

Learning setup:

- Given token encoder & cDAG function, learn the span encoder & the readout function
- Considering "exchangeable parts": Subsequences $X,V \in \mathcal{I}^*$

such that $X_1XX_2 \in \mathcal{X}$ and $X_1VX_2 \in \mathcal{X}$ for some prefix/suffix $X_1, X_2 \in \mathcal{I}^*$

• Define (implicitly) known combinations of (implicitly) known parts via low error on examples

$$\begin{array}{ll} \textbf{Ground-truth} & \left| \hat{h} \circ \hat{g}^{\otimes D(X_1 X X_2)}(e(X_1 X X_2)) - h \circ g^{\otimes D(X_1 X X_2)}(e(X_1 X X_2)) \right| \leq \epsilon \\ \textbf{Learned} & \left| \hat{h} \circ \hat{g}^{\otimes D(V_1 V V_2)}(e(V_1 V V_2)) - h \circ g^{\otimes D(V_1 V V_2)}(e(V_1 V V_2)) \right| \leq \epsilon \end{array}$$

Quantifying Systematic Generalization

Systematic generalization is often described as being able to "handle unknown combination of known parts"

Learning setup:

- Unknown combination of known parts: X_1VX_2
- What can we say about the quality of the learned functions on the unknown combination $\left|\hat{h} \circ \hat{g}^{\otimes D(X_1VX_2)}(e(X_1VX_2)) h \circ g^{\otimes D(X_1VX_2)}(e(X_1VX_2))\right|$
- Preliminary results indicate that more complex compositional functions will have a worse bound
- Learning complex compositions is hard even if the cDAG is given and we just need to learn the span encoder and readout function

Thank you

Parikshit Ram <u>Parikshit.Ram@ibm.com</u>

