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Hyperparameter Optimization
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Data domain & distribution

Per-sample loss

Loss for a HP configuration

Model for HP trained on data 

HPO problem



SMBO

Sequential Model Based Optimization

– Generate Initial Design of HPs

– Evaluate HPs

– Until budget expires

• Construct surrogate model & acquisition 
function

• Select next HP via AF maximization

• Evaluate new HP

• Add (HP, loss) to set of evaluated HPs

– Select best HP from evaluated set

Generate Initial 
Design

Acquisition Function 
Maximization

Construct Surrogate Function
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Few-shot HPO

Very low-budget SMBO

– Generate Initial Design of HPs

– Evaluate HPs

– Until budget expires

• Construct surrogate model & acquisition 
function

• Select next HP via AF maximization

• Evaluate new HP

• Add (HP, loss) to set of evaluated HPs

– Select best HP from evaluated set

Generate Initial 
Design

Acquisition Function 
Maximization

Construct Surrogate Function
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Meta-learning from 
Previous HPO Experiences

Source tasks:

- Evaluated HPs

- Surrogate functions
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Meta-learning from 
Previous HPO Experiences

Target task few-shot warm-started HPO

- Meta-learning small initial design

- Meta-learning pruned HP search space

- Transfer surrogate functions

AutoML 2022 / Baltimore, USA / © 2022 IBM Corporation



Goal of Analysis &
Pre-requisites

Optimality gap upper bound – Smooth per-sample loss w.r.t. label

– Smooth loss w.r.t. HPs

– Smooth surrogate functions w.r.t. HPs

– Quantify "domain-gap" between source & target
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HP from few-shot HPO

Optimal HP for problem



Quantifying Domain Gap

Domain gap bound – Distribution of interest

– Domain gap is HP specific.

– No need for distance between different multi-
dimensional data distributions of different 
sizes and dimensionalities; simple 1-
Wasserstein distance suffices.
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Best Achievable
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Best Achievable
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Best Achievable
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Best Achievable

Possible to get zero optimality 
gap without requiring the 
target distribution to match 
one of the source distributions
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Optimality Gap for 
Pruned Search Spaces

– Smaller pruned spaces help

– Best possible

– Zero optimality gap only if target distribution 
matches one of the source distributions

– Weaker than
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Optimality Gap for 
Pruned Search Spaces
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Meta-learned Initial Design

Meta-learned Bounding Box

Meta-learning Convex Hull



Optimality Gap for 
Surrogate Transfer

– Weights

• Fixed

• Adaptive
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– Not necessarily better than pruned HP space for 
fixed weights

– Can match best possible 

if and only if weights are adaptive and set 
appropriately

Optimality Gap for 
Surrogate Transfer
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– Depends on smoothness and approximation 
ability of surrogate functions

– Best achievable



Conclusion

Novel theoretical framework for 
warm-started few-shot HPO

– Allows understanding of existing meta-learning 
schemes

– Produces novel insights in terms of the domain-
gap and comparison of existing schemes

Role of 
meta-features

Effect of 
multi-fidelity 
evaluation

New warm-started HPO schemes 
to approach the best possible 
optimality gap bounds
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