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Abstract We study the general framework of warm-started hyperparameter optimization (HPO) where

we have some source datasets (tasks) on which we have already performed HPO, and we

wish to leverage the results of these HPO to warm-start the HPO on an unseen target dataset

and perform few-shot HPO. Various meta-learning schemes have been proposed over the

last decade (and more) for this problem. In this paper, we theoretically analyse the optimality

gap of the hyperparameter obtained via such warm-started few-shot HPO, and provide novel

results for multiple existing meta-learning schemes. We show how these results allow us

identify situations where certain schemes have advantage over others.

1 Introduction

Hyperparameter optimization or HPO has become a critical component of machine learning and

articial intelligence, where the true potential of novel learning models and techniques are only

visible if the hyperparameters (HPs) are appropriately congured. However, it is also widely

accepted that HPO is generally a very computationally expensive process on account of being

a derivative-free optimization (DFO) problem, requiring multiple model trainings for the same

problem. The (already expensive) computational cost continues to grow as the community explores

larger and larger models, which take more and more compute to train (even for a single HP). There

are two common techniques to mitigate this computational challenge. The rst technique leverages

multi-delity HPO where the cost of the model training for any HP is adaptively modied to

provide more resources to more promising HPs while terminating the model training early for low

performant HPs (Jamieson and Talwalkar, 2016; Sabharwal et al., 2016; Klein et al., 2017; Falkner

et al., 2018). The second technique uses the “experience” from previously solved HPO problems to

“warm-start” the HPO for a new problem so that we are able to achieve good performance with the

evaluation of just a small number of HPs – namely, few-shot HPO.
In this paper, we focus on this warm-started few-shot HPO. Various such techniques have been

developed under the (quite wide) umbrella of meta-learning (Vanschoren, 2018; Hospedales et al.,

2021). HPO with sequential model based optimization or SMBO usually (i) performs an initial

exploration of the HP space, (ii) builds a surrogate loss function and a related acquisition function

that tries to mimic the true loss we want to minimize, and balances the exploration and exploitation

in the HP space. This is a simplication of the SMBO process for the ease of exposition. The extent

to which the surrogate loss function is informative initially relies on the level of initial exploration.

There are two high-level (not mutually exclusive) meta-learning schemes that warm-start this

SMBO scheme. One scheme prunes the HP space to what is considered to be promising parts of the

HP space based on previous HPO experiences, so the HPO for the new problem is only performed

within this pruned space. Another scheme utilizes or transfers the surrogate loss functions from the

previous HPO experiences for a new HPO problem, and does not rely on the initial exploration of

the HP space for a suciently informative surrogate function. A nal technique complements the

above techniques by making use of problem “meta-features” that allow us to estimate the similarity

between the new HPO problem at hand and the previously experienced HPO problems, allowing
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us to prune the HP spaces or select the transfer surrogate loss functions in an adaptive manner,

focusing more on the most similar HPO problems. The gain from such meta-features rely on the

ability of these meta-features to estimate the relevant similarity between dierent HPO tasks.

Motivation and contributions. While these warm-starting schemes for HPO have been widely

studied empirically, we wish to understand what kind of theoretical guarantees are possible for

such warm-started few-shot HPO. We believe such guarantees allow us to understand the situations

where certain schemes are expected to perform better than others, and what factors aect the

performance. Finally, we believe that such guarantees allow us to explain seemingly surprising

empirical observations. We specically focus on the optimality gap of warm-started few-shot HPO

and make the following novel contributions:

• We present a general theoretical framework to analyse few-shot HPO with pruned HP space,

and we show how this framework allows us to bound the optimality gap of various HP pruning

schemes and how these guaranteees compare to each other.

• We present a general theoretical framework to analyse few-shot HPO with transfer surrogate loss

functions, and we show how these guarantees compare to those for the pruning-based schemes.

Outline. In the following §2, we briey discuss the existing literature on warm-starting and meta-

learning. We set up notation and some preliminary assumptions and results in §3. We study the

HP space pruning based warm-starting schemes in §4 and the transfer surrogate based schemes in

§5. We discuss our limitations and broader impact in §6 and conclude in §7.

2 Related Work

Meta-learning is a wide umbrella in machine learning (see various surveys such as Vanschoren

(2018); Hospedales et al. (2021)) including but not limited to areas such as multi-task learning,

representation learning, transfer learning, continual learning, few-shot supervised learning, hyper-

parameter optimization, and also involving areas such as learning to optimize and learning loss

functions. However, general HPO is one area where we are not able to leverage gradient-based

optimization for the problem specic “learning”; most other areas allow for gradients to be available

and even ow between the meta-level and the problem specic level. However, there are various

attempts to leverage schemes from other areas in meta-learning for HPO. Volpp et al. (2019) take

inspiration from the learning to optimize framework (Andrychowicz et al., 2016; Li and Malik, 2016;

Chen et al., 2017) to meta-learn acquisition functions for SMBO, while Wistuba and Grabocka (2021)

leverage ideas from few-shot learning (Finn et al., 2017) to meta-learn the surrogate loss function.

In the context of HPO, one set of techniques can be classied as learning initializations for

the HPO (Brazdil et al., 2003; Feurer et al., 2014, 2015; Wistuba et al., 2015c). There are various

techniques to generate these initializations, and they are generally selected from the set of promising

HPs in previously experienced HPO problems, and possibly ranked (with additional computation)

based on the aggregate performance of these selected HPs across all seen HPO tasks. Once this set

of HPs has been selected and ranked, they are used to seed the HPO for new HPO problems. In

the context of few-shot HPO, this amounts to just considering the HPs in this set or performing

local searches around these selected HPs. This process can be seen as an implicit form of pruning
the HP space. There are also some meta-learning schemes (Wistuba et al., 2015a; Perrone et al.,

2019) that explicitly prune the search space based on experienced HPO problems to remove parts

of the HP space where no high performing HPs lie and allow the HPO for a new problem to

focus on a (possibly much smaller) HP search space. An alternate way of warm-starting the HPO

is to directly utilize the surrogate loss functions from the previously experienced SMBO based

HPO (Yogatama and Mann, 2014; Feurer et al., 2018b; Perrone et al., 2018; Wistuba et al., 2018;

Wistuba and Grabocka, 2021). We can either maintain a single surrogate loss function that is
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progressively updated as we experience multiple HPO problems, or we can just utilize the surrogate

loss functions, generated independently during the previous HPO experiences, to warm-start a

new HPO problem by leveraging some (possibly weighted) combination of the individual surrogate

functions to make predictions for the new HPO problem. In the few-shot HPO regime we are

focusing on, we assume that it is not possible to generate an informative surrogate loss functions for
the new HPO problem at hand and we have to entirely rely on the transfer surrogate loss functions.

Meta-features from the problem often play an important role in warm-starting few-shot

HPO (Vanschoren, 2010, 2018). These meta-features allow us to estimate similarity between

previously experienced HPO tasks and the new task at hand. This estimated similarity can then be

used to improve any warm-starting scheme for few-shot HPO. For initialization based schemes,

these similarities can be used to rank the initializations. For transfer surrogate based warm-starting

schemes, these meta-features based similarity can be used to set the weights for the dierent surro-

gate functions, guiding the new HPO problem to focus on the predictions of the surrogate models

for the “nearby” previously seen HPO problems. There are various hand-crafted meta-features.

However, the additional gain from these meta-features rely heavily on their ability to accurately

encode the relevant notion of similarity. To this end, there are some schemes to learn such HPO

specic meta-features (Wistuba et al., 2015b; Jomaa et al., 2021b,a; Rakotoarison et al., 2022).

Beyond these above schemes, there are various other meta-learning schemes that have been

employed independently or in conjunction with the above schemes. Learning curve extrapolations

can be meta-learned from previous HPO problems and utilized in the new HPO at hand to reject

HP candidates early based on the predictions of the meta-learned extrapolator (Rijn et al., 2015;

Wistuba and Pedapati, 2020). We can also meta-learn the hyperparameter importance, thereby

focusing the HPO to the smaller subspace of the HP space (Hutter et al., 2014; Probst et al., 2019).

In this paper, we theoretically study a couple of specic HP pruning schemes and the trans-

fer surrogate schemes. We will explicitly describe the schemes that we study in the following

sections. While we are focusing on few-shot HPO, we also want to study the case where the

number of previously seen HPO tasks is quite high. We believe that this is a reasonable situation

thanks to the plethora of datasets and executions curated on repositories such as the OpenML

platform (Vanschoren et al., 2013) and, to a smaller extent, the UCI repository (Dua and Gra, 2017).

3 Preliminaries

We begin by setting up some notation. We utilize [𝑁 ] for any positive integer 𝑁 to denote the set

of indices {1, 2, . . . , 𝑁 }. For any vector 𝑎, we denote its 𝑖-th entry as 𝑎[𝑖]. We use 𝜏 to denote a

single HPO problem and 𝐷 to denote its data distribution. We reserve 𝑡 as a subscript to denote the

index of any previously experienced HPO problem, with 𝜏𝑡 denoting the 𝑡-th HPO problem with

data distribution 𝐷𝑡 . We reserve \ and 𝜙 for hyperparameters (HPs) and Θ and Φ for sets of HPs.

HPO task description. A hyperparameter optimization or HPO task 𝜏 corresponds to a particular

data distribution 𝐷 from which the training set of examples and the test examples are drawn. Each

example (𝑥,𝑦) ∼ 𝐷 has an input domain 𝑋 and an output domain 𝑌 with (𝑥,𝑦) ∈ 𝑋 × 𝑌 . We

consider a 𝛽-Lipschitz loss function ℓ : 𝑌 × 𝑌 → R+ where ℓ (𝑦,𝑦 ′) quanties the loss of predicting
𝑦 ′ for the ground truth 𝑦. We denote the loss of a HP \ for the data distribution 𝐷 as

𝐿(\, 𝐷) := E𝑆∼𝐷𝑛E(𝑥,𝑦)∼𝐷ℓ (𝑦, 𝑓\,𝑆 (𝑥)), (1)

where 𝑓\,𝑆 : 𝑋 → 𝑌 is the model learned from training for HP \ with a training set 𝑆 of 𝑛 samples.

Note that the expectation is both over the training set 𝑆 and the test example (𝑥,𝑦) sampled from

the data distribution. For a target HPO task 𝜏 with distribution 𝐷 , we wish to solve the following:

min

\ ∈Θ
𝐿(\, 𝐷) . (2)
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Source tasks. Consider 𝑇 source HPO tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], that have been previously solved. For each

task 𝜏𝑡 with data distribution 𝐷𝑡 , 𝑡 ∈ [𝑇 ], we denote the corresponding input domains as 𝑋𝑡 , 𝑡 ∈ [𝑇 ]
and output domains as 𝑌𝑡 , 𝑡 ∈ [𝑇 ]. For each of the solved HPO tasks, we have the set of 𝐾 evaluated

HPs Φ𝑡 = {\𝑡,𝑖 , 𝑖 ∈ [𝐾]} and the surrogate loss functions 𝑠𝑡 : Θ → R. We assume that 𝐾 is large

enough, implying that the source HPO task is solved thoroughly. For each task, we use 𝜙𝑡 to denote

the best tried HP, that is 𝜙𝑡 = argmin𝑖∈[𝐾 ] 𝐿(\𝑡,𝑖 , 𝐷𝑡 ). For simplicity of exposition
1
, we assume

that, for each task 𝑡 ∈ [𝑇 ], 𝜙𝑡 is optimal, that is 𝐿(𝜙𝑡 , 𝐷𝑡 ) ≈ min\ ∈Θ 𝐿(\, 𝐷𝑡 ). We do not make any

assumptions on what HPO technique is used to solve the source tasks.

Few-shot warm-started HPO for target task. Given the experience with the 𝑇 source tasks, the

goal of warm-started HPO for an unseen target task 𝜏 (with data distribution 𝐷) is to be able to

warm-start the HPO so that we are able to nd strong HP candidates with a small number 𝑘 � 𝐾 of

HP evaluations (where 𝐾 HPs are evaluated on each source task 𝜏𝑡 , 𝑡 ∈ [𝑇 ]). We consider the regime

where 𝑇 is large enough and 𝑘 is small enough that 𝑘 ≤ 𝑇 . For the new HPO task 𝜏 , we will use
ˆ\ ∈ Θ to denote the solution of the few-shot HPO and \★ ∈ Θ to denote the optimal solution. The

main contributions of this paper are novel bounds on the optimality gap 𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) . As
with the source tasks, we do not make any assumptions on the HPO technique used for the target

task – in the few-shot regime, we do not have enough “shots” to obtain a meaningful surrogate

function for the target task. While restrictive, this is a realistic application of warm-started HPO.
2

HP space and bounded change. We use \ to denote a HP setting with Θ denoting the HP space

and \ ∈ Θ. Assume that there are ℎ HPs. In the most general setting, we can have ℎ𝑛 numerical, ℎ𝑜
ordinal and ℎ𝑐 categorical hyperparameters, with ℎ = ℎ𝑛 + ℎ𝑜 + ℎ𝑐 . If all the HPs are numerical,

Θ ⊆ Rℎ . For simplicity of exposition, we will focus on this case. However, we discuss in Appendix A

how our results would extend to the case where the HPs aremixed numerical, ordinal and categorical.

We make the following assumption on the dependence of the loss function on \ :

Assumption 3.1. For a given data distribution 𝐷 , we assume that the loss function 𝐿(·, 𝐷) : Θ → R+
is 𝛾-Lipschitz continuous. So, ∃𝛾 > 0 such that, for any \, \ ′ ∈ Θ,

|𝐿(\, 𝐷) − 𝐿(\ ′, 𝐷) | ≤ 𝛾 · ‖\ − \ ′‖ . (3)

It is not very restrictive that, for any given data distribution 𝐷 , the loss function 𝐿(·, 𝐷) : Θ →
R+ has a bounded Lipschitz constant. However, such an assumption seems problematic for discrete

and categorical HPs. We discuss in Appendix A.2 how we can also work with a more general notion

of modulus of continuity. In short, we only require that, for a single “unit” of change (change a

categorical HP from one category to another), the loss does not change dramatically. Note that, a

trivial upper bound exists for bounded losses. However, we are more interested in more non-trivial

bounds. Counterexamples do exist – in a neural network, switching the activation function, a

categorical HP, from linear to relu can have a dramatic eect.

Boundedness with change in data distribution. While we can make a boundedness assumption

for a change in the HP, such an assumption is more involved to dene with data distributions. We

leverage the structure of problem and utilize a common notion of distance between distributions in

our analysis. We specically show the following (see proof in Appendix B.2):

1
Assuming that the optimal HPs for the source tasks have been found is quite optimistic. However, we make

this assumption for the ease of exposition. Instead, we can consider that each source task is Δ𝑡 -suboptimal – that is,

𝐿(𝜙𝑡 , 𝐷𝑡 ) − min\ ∈Θ 𝐿(\, 𝐷𝑡 ) ≤ Δ𝑡 > 0. In this case, all our results will follow in a straightforward manner with an

additive factor of Δ𝑡 in the bounds. We did not think this would add much in terms of the novelty of the analyses.

2
A related problem is the “medium”-shot scenario where the target task gets more evaluations. In this case, the role

of the HPO scheme used for the target task will play a role and we believe that our presented theoretical framework will

allow one to study the conditions under which improved performance guarantees for the target task can be achieved.
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Lemma 3.1. For a xed HP \ ∈ Θ and any two data distributions 𝐷, 𝐷 ′, we can show that

|𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | ≤ 𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷 ′)) , (4)

where 𝑃\ (𝐷) is the distribution of (𝑦, 𝑓\,𝑆 (𝑥)) for (𝑥,𝑦) ∼ 𝐷 and 𝑆 ∼ 𝐷𝑛 and 𝑓\,𝑆 is the model
learned with training set 𝑆 for HP \ ∈ Θ (and 𝑃\ (𝐷 ′) dened correspondingly for 𝐷 ′),and𝑊1 is the
1-Wasserstein distance between two distributions.

Remark. The distribution 𝑃\ (𝐷) is derived from 𝐷 as the distribution of the pair (𝑦, 𝑓\,𝑆 (𝑥)) of the
ground truth label 𝑦 and the prediction of a model on the corresponding test point 𝑥 trained on a

training set 𝑆 with hyperparameter \ , where both the training set 𝑆 and the test point (𝑥,𝑦) are
sampled from 𝐷 . For example, in regression or binary classication, this 𝑃\ (𝐷) is a 2-dimensional

distribution derived from the original data distribution 𝐷 .

Remark. The use of 1-Wasserstein distance between distributions (dened in Denition B.2) comes

out naturally from the proof of Lemma 3.1. While it is intuitive that the dierence between the loss

of two dierent distributions |𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | on the same hyperparameter \ would depend

on the “domain-gap” between distributions 𝐷 and 𝐷 ′
, our result highlights that this dierence

is bounded by (a scaling of) the 1-Wasserstein distance between derived distributions 𝑃\ (𝐷) and
𝑃\ (𝐷 ′). Some novel insights here are that (i) the domain-gap is hyperparameter dependent, and

(ii) the domain-gap does not require the denition of a distance between distributions of data of

dierent sizes and dimensionality, and is dened with a (relatively) simple 1-Wasserstein distance.

Properties of source task surrogate loss functions. To analyse the performance of few-shot HPO

with surrogate functions, we need to characterize the smoothness and quality of the per-source-task

surrogate functions 𝑠𝑡 , 𝑡 ∈ [𝑇 ]. The following simple but restrictive condition assumes that a

surrogate loss function 𝑠𝑡 : Θ → R universally approximates the source task loss 𝐿(·, 𝐷𝑡 ) : Θ → R:
Assumption 3.2. For each surrogate loss function 𝑠𝑡 , 𝑡 ∈ [𝑇 ], we assume that, for some small 𝜖 > 0

|𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) | ≤ 𝜖∀\ ∈ Θ. (5)

This is a very restrictive assumption but corresponds to the highest quality surrogate loss

functions. We consider this here to highlight in the sequel that such high quality surrogate functions

also lead to tighter bounds. Alternately, we make the following pair of weaker assumptions:

Assumption 3.3. We assume that, for each task 𝜏𝑡 , 𝑡 ∈ [𝑇 ], the corresponding surrogate loss function
𝑠𝑡 : Θ → R is 𝜔-smooth. That is, for some small 𝜔 > 0 and any \, \ ′ ∈ Θ:

|𝑠𝑡 (\ ) − 𝑠𝑡 (\ ′) | ≤ 𝜔 · ‖\ − \ ′‖ . (6)

Assumption 3.4. For each source task 𝜏𝑡 , 𝑡 ∈ [𝑇 ] with the surrogate loss function 𝑠𝑡 and set of HPs

Φ𝑡 = {\𝑡,𝑖 , 𝑖 ∈ [𝐾]} tried during the source task HPO for a large 𝐾 ,

|𝑠𝑡 (\𝑡,𝑖) − 𝐿(\𝑡,𝑖 , 𝐷𝑡 ) | ≤ 𝜖∀𝑖 ∈ [𝐾] . (7)

Assumption 3.3 assumes that the surrogate functions are Lipschitz smooth while Assumption 3.4

assumes that the surrogate loss functions have low approximation error on the HPs seen during

the HPO – the set of HPs used to generate the surrogate loss function in the rst place. For

common nonparametric surrogate functions such as Gaussian Processes and Random Forests, this

assumption is true since the error for such regressors on the training set is zero.
3

3
One aspect of our analysis is that the surrogate function (as studied) can work as is if the surrogate model is just the

negative acquisition function as long as the acquisition function (AF) is suciently smooth (Assumption 3.3). The AF

already incorporates the uncertainty and hence is handled in our analysis (albeit implicitly). Assumption 3.4 pertains to

the “quality” of the surrogate function at the evaluated hyperparameters {\𝑡,𝑖 , 𝑖 ∈ [𝐾]} (for the source task 𝑡 ∈ [𝑇 ]).
Note that, at the evaluated hyperparameters, the uncertainty would be 0, simplifying the dierence between the actual

loss value and the surrogate function value (the negative AF).

5



Best possible results. Equipped with these precise technical conditions, we establish the bounds

for the optimality gap from the dierent warm-started few-shot HPO in the following sections §4

and §5. Given the above conditions, the best achievable universal bound one can expect is

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ �̃�
(
max

\ ∈Θ
min

𝑡 ∈[𝑇 ]
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
. (8)

The best possible optimality gap is related to how similar the most similar source task is on a per-HP

basis. In the following, we discuss conditions under which we might achieve zero optimality gap:

Remark. In the simplest case, when 𝐷 ≈ 𝐷𝑡 , we should expect no optimality gap since we have

already solved the HPO task with 𝐷𝑡 . However, the above bound indicates another reasonable

situation where there might be zero optimality gap: If there are a set of source tasks such that 𝐷

is “similar” with respect to𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) to any one of these source tasks 𝜏𝑡 for any \ ∈ Θ –

the most similar source task can be dierent for dierent \ – then it is possible for a warm-started

few-shot HPO to obtain zero optimality gap with all the information available in the experience

obtained from the source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], without requiring the target distribution to match any

one of the source distributions for all HPs, which is a signicantly less restrictive condition.

In the ensuing presentation, we will discuss how the optimality gaps for the dierent warm-

starting schemes compare to this best case universal bound.

4 Pruned Search Spaces
As discussed in §2, there are various ways of pruning the HP space Θ to a smaller subset Θ̄ ⊂ Θ, and
we will specically study three such techniques in this section. The proofs for all the theoretical

results are in Appendix C. In the most general case, for a pruned HP space Θ̄ ⊂ Θ, we show that:

Theorem 4.1. Given source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], and a resulting pruned search space Θ̄ ⊂ Θ, let ˆ\ be the
result of a 𝑘-shot warm-started HPO for a target HPO task 𝜏 with data distribution 𝐷 and let \★ be the
optimal HP for the target task. Then, under Assumption 3.1, the optimality gap is bounded as:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ min

𝑡 ∈[𝑇 ]:𝜙𝑡 ∈Θ̄

(
𝛾 ·max

\ ∈Θ̄
‖\ − 𝜙𝑡 ‖ + 2𝛽 ·max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
, (9)

where 𝑃\ (𝐷) and 𝑃\ (𝐷𝑡 ) are as dened in Lemma 3.1, and𝑊1 is the 1-Wasserstein distance.

To prove this result, we make use of Assumption 3.1 and Lemma 3.1. See Appendix C.2 for

details. One important detail of this result is that the best possible upper bound we can achieve is

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ �̃�
(
min

𝑡 ∈[𝑇 ]
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
. (10)

Comparing this to overall best possible gap bound (8), we see that the order of the “min𝑡 ∈[𝑇 ]” and
the “max\ ∈Θ” is swapped, which is looser (Theorem C.3 in Appendix C.3). This implies that, with a

pruned search space, it is not generally possible to get to the best achievable bound. However, it

does still imply a zero optimality gap in the case where 𝐷 ≈ 𝐷𝑡 for some 𝑡 ∈ [𝑇 ]. In the following,

we discuss specic HP space pruning schemes and corresponding optimality gap bounds.

Source best HPs + local search. The rst way to prune the HP space is to only consider the best

HPs for the source tasks. That is, Θ̄ := {𝜙𝑡 , 𝑡 ∈ [𝑇 ]}. A generalization of this pruning would be

to perform local searches around the best HPs of the source tasks. Then, for a local search radius

𝛿 > 0, the pruned search space would be dened as:

Θ̄ :=
⋃
𝑡 ∈[𝑇 ]

{\ ∈ Θ : ‖\ − 𝜙𝑡 ‖ ≤ 𝛿} . (11)

In this case, we can show the following result assuming that the few-shot budget 𝑘 > 𝑇 :

6



Corollary 4.1. Consider the conditions and assumptions of Theorem 4.1. Then, for 𝑘-shot HPO with
the pruned HP space dened in (11) and 𝑘 > 𝑇 , the optimality gap is bounded as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 2𝛽 · min

𝑡 ∈[𝑇 ]
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (12)

In this case, the minimum is over all source tasks, allowing the bound to be the tightest possible

as in (10). However, we would want the number of tasks 𝑇 to be high, in which case, 𝑘-shot

HPO is no longer few shot. In the few-shot setting with 𝑘 < 𝑇 , we can randomly select (without

replacement) 𝑘 out of the 𝑇 HPs in Θ̄ to seed the HPO, and have the following probabilistic bound:

Corollary 4.2. Consider the conditions and assumptions of Theorem 4.1 and Corollary 4.1. Also, let us
denote Δ𝑡 := max\ ∈Θ𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) for all source task 𝜏𝑡 , 𝑡 ∈ [𝑇 ]. Let Δ(1) ≤ Δ(2) ≤ · · · ≤ Δ(𝑇 )
be an ordering of {Δ𝑡 , 𝑡 ∈ [𝑇 ]}. Then, with probability at least 1 − Y for Y ∈ (0, 1),

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 2𝛽 · Δ(𝑛 (Y)) , where 𝑛(Y) = min

{
𝑛 ∈ [𝑇 ] :

𝑛−1∑︁
𝑖=0

(
𝑇−𝑛+𝑖
𝑘−1

)(
𝑇
𝑘

) ≥ 1 − Y
}
. (13)

This result allows us to bound the optimality gap with high probability (in contrast to the

other bounds which are deterministic) utilizing all the source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ] instead of only the

ones whose best HPs are selected to seed the 𝑘-shot HPO (with 𝑘 < 𝑇 ). This result shows that

we can at best get the 𝑛(Y)-ranked lowest bound instead of the tightest possible (as in the case in

Corollary 4.1). However, note that the expected rank achievable for the random sampling scheme

is 𝑂 (𝑇/𝑘) (see Theorem C.1 in Appendix C.1), so the high probability rank 𝑛(Y) will only be higher.

Ranked source best HPs + local search. A data-driven way of ordering the per-source-task best

HPs Φ is to evaluate the per-source-task best HPs {𝜙𝑡 , 𝑡 ∈ [𝑇 ]} on all the source task distributions

𝐷𝑡 , 𝑡 ∈ [𝑇 ] and order the𝜙𝑡 s with respect to their aggregate loss,
∑
𝑗 ∈[𝑇 ] 𝐿(𝜙𝑡 , 𝐷 𝑗 ), or their aggregate

rank

∑
𝑗 ∈[𝑇 ] 𝜌 𝑗

(
𝐿(𝜙𝑡 , 𝐷 𝑗 )

)
, where 𝜌 𝑗

(
𝐿(𝜙𝑡 , 𝐷 𝑗 )

)
is the relative rank of theHP𝜙𝑡 for data distribution

𝐷 𝑗 in the set {𝐿(𝜙1, 𝐷 𝑗 ), 𝐿(𝜙2, 𝐷 𝑗 ), . . . , 𝐿(𝜙𝑇 , 𝐷 𝑗 )} (Brazdil et al., 2003; Feurer et al., 2018a, 2020).
We will study the aggregate loss version of the ordering. Note that this ranking process will be

computationally very expensive in the regime where 𝑇 is large because we would have to evaluate

𝑂 (𝑇 2) pairs of HPs {𝜙𝑡 , 𝑡 ∈ [𝑇 ]} and data distributions {𝐷𝑡 , 𝑡 ∈ [𝑇 ]}.

Corollary 4.3. Consider the conditions and assumptions of Theorem 4.1. Then, for the pruned HP space
dened by picking the best 𝑘 HPs in {𝜙𝑡 , 𝑡 ∈ [𝑇 ]} with respect to the metric𝑚𝑡 :=

∑
𝑗 ∈[𝑇 ] 𝐿(𝜙𝑡 , 𝐷 𝑗 )

and performing a local search with a radius 𝛿 > 0, the optimality gap is bounded as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 𝛽 · min

𝑡 ∈[𝑇 ]
©«𝐾 (𝐷, 𝐷𝑡 ) + 1

𝑇

∑︁
𝑗 ∈[𝑇 ]

(
𝐾 (𝐷, 𝐷 𝑗 ) + 𝐾 (𝐷𝑡 , 𝐷 𝑗 )

)ª®¬ , (14)

where 𝐾 (𝐷,𝐷 ′) := max\ ∈Θ𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷 ′)) for any pair of task data distributions 𝐷, 𝐷 ′.

This result shows that, with 𝑘-shot HPO utilizing the ranked list of per-source-task best HPs,

optimality gap not only depends on the distance of the target task distribution 𝐷 to its “closest”

source task data distribution 𝐷𝑡★ := argmin𝐷𝑡
𝐾 (𝐷,𝐷𝑡 ), but also on the average distribution

distance between 𝐷 and all the source task distributions, and the average distribution distance

between 𝐷𝑡★ and all the source task distributions. This implies that we can actually get a tighter

bound by considering the distribution that best balances all these terms instead. It is important to

note that, if the per-source-task best HPs Φ were ordered such that the 𝜏𝑡★ (the “closest” source

task) was guaranteed to be in the top-𝑘 for any target task distribution 𝐷 (maybe by leveraging

meta-features), we would be able to get the tightest possible optimality gap for the pruned HP

spaces as in Corollary 4.1 in the few-shot 𝑘 < 𝑇 regime.
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Bounding box of source best HPs. Instead of explicitly focusing on the best HPs from the source

tasks, another way to prune the HP space to consider a small subset of the HP space that contains

all the per-source-task best HPs. One such subset of the HP space is the smallest bounding box in

the HP space that contains Φ = {𝜙𝑡 , 𝑡 ∈ [𝑇 ]} and is dened as (Perrone et al., 2019)

Θ̄ :=

{
\ ∈ Θ : ∀𝑖 ∈ [ℎ], \ [𝑖] ∈

[
min

𝑡 ∈[𝑇 ]
𝜙𝑡 [𝑖], max

𝑡 ∈[𝑇 ]
𝜙𝑡 [𝑖]

]}
. (15)

Corollary 4.4. Consider the conditions and assumptions of Theorem 4.1. Then, for the pruned search
space in (15), the optimality gap of 𝑘-shot HPO is bounded by

min

𝑡 ∈[𝑇 ]
©«𝛾 ·

√︄ ∑︁
𝑖∈[ℎ]

_2
𝑖
+ 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

ª®¬ , (16)

where _𝑖 = max

{(
max𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖] − 𝜙𝑡 [𝑖]

)
,
(
𝜙𝑡 [𝑖] −min𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖]

)}
.

This result indicates that we can get the desired bound with respect to the closest source

distribution 𝐷𝑡★ , however, we also have to pay the price of the size of the bounding box in the

HP space in terms of the distance between the best HP 𝜙𝑡★ for the closest source task 𝜏𝑡★ and its

furthest corner in the bounding box. Note that this furthest corner of this bounding box may not

correspond to any one particular 𝜙𝑡 , 𝑡 ∈ [𝑇 ]. For a large bounding box, we would be able to get a

tighter bound by selecting the source task which balances both the terms but the bounds will still

be of the same order since _𝑖 ≥ 1/2
(
max𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖] −min𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖]

)
regardless of the task selected.

Convex hull of source best HPs. Another subset of the HP space that contains all of Φ = {𝜙𝑡 , 𝑡 ∈
[𝑇 ]} is the convex hull of this set (Perrone et al., 2019), giving us the following pruned HP space

Θ̄ := {\ ∈ Θ : ∃𝑤𝑡 ∈ [0, 1], 𝑡 ∈ [𝑇 ],𝑤1 +𝑤2 + · · · +𝑤𝑇 = 1, \ = 𝑤1𝜙1 +𝑤2𝜙2 + · · · +𝑤𝑇𝜙𝑇 } . (17)

This is a smaller subset than the bounding box in (15). We have the following result:

Corollary 4.5. Consider the conditions and assumptions of Theorem 4.1. Then, for the pruned search
space in (17), the optimality gap of 𝑘-shot HPO is bounded by

min

𝑡 ∈[𝑇 ]

(
𝛾 · max

𝑗 ∈[𝑇 ]
‖𝜙𝑡 − 𝜙 𝑗 ‖ + 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
. (18)

This results shows a tighter bound relative to the bounding box (Corollary 4.4) and theoretically

corroborates the motivation and the empirical observations of Perrone et al. (2019). The upper

bound in Corollary 4.5 depends on the distance between actual HPs 𝜙𝑡 , 𝜙 𝑗 , 𝑡, 𝑗 ∈ [𝑇 ] as opposed
to the distance to the farthest corner in the bounding box – the ratio between the former and the

latter can be as low as 𝑂 (1/√ℎ) where ℎ is the number of HPs and hence can be signicant. Again,

if we are able to get an ordering of the similarities between the target task 𝜏 and the source tasks

𝜏𝑡 , 𝑡 ∈ [𝑇 ] (for example, by leveraging meta-features), the HP space can be pruned even further to

focus on the part of the HP space that corresponds to the most similar tasks. This would allow us

to tighten the optimality gap bound by reducing both the terms in (16) and (18), getting us closer

to the best possible for pruned HP spaces (10).

Remark. An important implication of these results (Corollary 4.4 and 4.5) is that the search in the

pruned HP space does not need to be adaptive or accurate to enjoy these bounds on the optimality

gap, and potentially explains why Perrone et al. (2019) were able to show really strong performance

even with random search in these pruned HP spaces.
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5 Surrogate Functions

While pruning the HP space utilizing the per-source-task best HPs {𝜙𝑡 , 𝑡 ∈ [𝑇 ]}, we are only paying
attention to the best HP from each of the source task 𝜏𝑡 . However, we are ignoring all the remaining

experience obtained from performing the full HPO on the source tasks. One way to leverage that

information as well is to make use of the surrogate loss functions 𝑠𝑡 : Θ → R learned during the

source task HPO. Given these surrogate loss functions, we perform the 𝑘-shot HPO for the target

task with data distribution 𝐷 using the surrogate function dened as 𝑠 (\ ) := ∑
𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) · 𝑠𝑡 (\ )

for any \ ∈ Θ as a weighted sum of the source task surrogate functions, where the weights

𝛼𝑡 (\ ) ∈ [0, 1], 𝑡 ∈ [𝑇 ],∑𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) = 1∀\ ∈ Θ. These weights can be:

• xed to a constant value such as 𝛼𝑡 (\ ) = 1/𝑇∀\ ∈ Θ,∀𝑡 ∈ [𝑇 ] or to some value based on some

prior knowledge regarding the similarities between the tasks (Wistuba et al., 2018),

• adaptive such as 𝛼𝑡 (\ ) = 1 if 𝑡 = argmax𝑗 ∈[𝑇 ] 𝑠 𝑗 (\ ) and 0 otherwise, inducing the aggregated

surrogate function 𝑠 (\ ) = max𝑡 ∈[𝑇 ] 𝑠𝑡 (\ ),

• learned during the HPO (Yogatama and Mann, 2014; Wistuba and Grabocka, 2021).

We will focus only on xed and adaptive (but not learned) because we are focusing on 𝑘-shot HPO

with really small 𝑘 implying that we do not have enough opportunity to learn anything. We have

the following result for the general transfer surrogate loss function based 𝑘-shot HPO:

Theorem 5.1. Given source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], and their corresponding surrogate loss functions 𝑠𝑡 :
Θ → R, let ˆ\ be the result of a 𝑘-shot warm-started HPO with the surrogate function dened as
𝑠 (\ ) := ∑

𝑡 ∈[𝑇 ] 𝛼𝑡 (\ )𝑠𝑡 (\ ) for a target HPO task 𝜏 with data distribution 𝐷 . Let \★ be the optimal HP
for the target task. Then, the optimality gap is bounded as:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) (𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) + |𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) |) . (19)

The rst term in the upper bound is the weighted sum of the distances between the target

task data distribution 𝐷 and all the source tasks data distribution 𝐷𝑡 , while the second term

depends on the ability of the per-source-task surrogate functions 𝑠𝑡 to approximate the source

task loss function 𝐿(·, 𝐷𝑡 ). Compared to the results in §4 for pruning based warm-starting, there

are two key dierences: (i) Firstly, this bound involves a weighted sum over the distributional

distances. While they do not directly provide a tighter bound, if the weights 𝛼𝑡 (\ ) are set in a

smart way (for example, by utilizing meta-features) such that similar tasks are provided higher

weights, the resulting bounds would be more favorable. (ii) Secondly, and more importantly,

the bounds here are �̃� (max\ ∈Θ
∑
𝑡 ∈[𝑇 ] 𝛼𝑡 (\ )𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))) which could can be improved to

�̃� (max\ ∈Θmin𝑡 ∈[𝑇 ]𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))) in the best case with adaptive weights, which matches (in

order) the best possible discussed in (8), and hence provide an improvement over the best possible

for pruned HP spaces (10). This result indicates that the increased complexity of transfer surrogate

based warm-starting can provide guaranteed improvement over the simpler HP space pruning based

warm-starting, but only with adaptive weights.

Corollary 5.1. Under conditions of Theorem 5.1 and Assumption 3.2, we bound the optimality gap as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2𝜖 + 2𝛽 ·max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ )𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (20)

The restrictive Assumption 3.2 does allow us to get the tightest possible bound for the optimality

gap. However, we can also provide a bound with less restrictive assumptions:
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Corollary 5.2. Under conditions of Theorem 5.1 and Assumptions 3.3 & 3.4, and further denoting
by the set Φ𝑡 = {\𝑡,𝑖 , 𝑖 ∈ [𝐾]} the HPs evaluated during the HPO of task 𝜏𝑡 for each 𝑡 ∈ [𝑇 ], we can
bound the optimality gap as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2𝜖 + 2 ·max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ )
(
𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) + (𝛾 + 𝜔) min

𝑖∈[𝐾 ]
‖\ − \𝑡,𝑖 ‖

)
. (21)

One characteristic of Corollary 5.2 is that it allows us to tighten our bounds by leveraging the

closest HP from the source task HPO instead of being limited to just the best HP from the source

task, where the former is smaller. This allows us to maintain a smaller value for the term involving

‖\ − \𝑡,𝑖 ‖ while maximizing over \ ∈ Θ in the upper bound. Again, if the surrogate loss function

weights 𝛼𝑡 (\ ) are set in an adaptive manner, putting more weight on source task distributions most

similar to the target task distribution, this bound approaches the best possible (8).

6 Limitations and Broader Impact Statement

Limitations. On a high level, one limitation of our work is that we are comparing worst case

bounds on the optimality gaps, and interpreting the implications of these bounds. However, such

interpretations are contingent on the tightness of such bounds. On a technical level, we are

somewhat ignoring the fact that we do not really have access to the true loss 𝐿(\, 𝐷) for some HP

\ and task data distribution 𝐷 and instead have an estimate for a single training set sampled from

this distribution. In that case, the optimality gap will also depend on the statistical properties of

this estimate, and the current analyses would not directly transfer to this more general problem

setup. Moreover, while we discuss the best possible optimality gap bounds in the presence of prior

information that allow us to prune the HP space more aggressively or weigh the transfer surrogate

loss functions adaptively, we do not precisely describe the form and the use of such information. A

related limitation is that we do not explicitly focus on meta-features in our analysis. We present

the rst theoretical framework to study the optimality gap of warm-started few-shot HPO, and

anticipate that this framework will allow us to quantify the gains from dierent meta-features; we

will pursue this thread in future work because we believe this would be a signicant contribution

and of independent interest. In this paper, we only highlight situations where meta-features (learned

or otherwise) might play a role in obtaining improved theoretical guarantees.

Broader impact. We focus on establishing theoretical guarantees for algorithms that have been

previously empirically and practically studied and applied to various situations. To this end, we do

not anticipate this work to have signicant additional impact.

7 Conclusion and Future Work

In this paper, we focus on warm-started few-shot HPO within the SMBO framework and rigorously

analyse the optimality gap of various such warm-starting schemes, providing intuitive guarantees,

and identifying situations where one scheme (transfer surrogate loss functions) perform favourably

compared to another (HP space pruning). As future work, we wish to extend such analysis to

other warm-starting schemes such as hyperparameter importance and learning curve extrapolation

based schemes. Moreover, given the critical nature of multi-delity optimization for practical HPO,

we also plan to extend this analysis to incorporate the multi-delity nature of the few-shot HPO,

precisely characterising the optimality gap in terms of the optimality-eciency tradeo.
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8 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reect the paper’s

contributions and scope? [Yes] See contributions in §1 and main theoretical contributions
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(b) Did you describe the limitations of your work? [Yes] See §6

(c) Did you discuss any potential negative societal impacts of your work? [N/A] See §6

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

described and discussed in §3

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs detailed in Ap-

pendix C and D and appropriately linked to in the main text.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [N/A] [We only perform a theoretical analysis.]

(b) Did you include the raw results of running the given instructions on the given code and

data? [N/A] [We only perform a theoretical analysis.]

(c) Did you include scripts and commands that can be used to generate the gures and tables

in your paper based on the raw results of the code, data, and instructions given? [N/A] [We

only perform a theoretical analysis.]

(d) Did you ensure sucient code quality such that your code can be safely executed and the

code is properly documented? [N/A] [We only perform a theoretical analysis.]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, xed

hyperparameter settings, and how they were chosen)? [N/A] [We only perform a theoretical

analysis.]

(f) Did you ensure that you compared dierent methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [N/A] [We only perform a theoretical analysis.]

(g) Did you run ablation studies to assess the impact of dierent components of your approach?

[N/A] [We only perform a theoretical analysis.]

(h) Did you use the same evaluation protocol for the methods being compared? [N/A] [We

only perform a theoretical analysis.]

(i) Did you compare performance over time? [N/A] [We only perform a theoretical analysis.]

(j) Did you perform multiple runs of your experiments and report random seeds? [N/A] [We

only perform a theoretical analysis.]
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(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A] [We only perform a theoretical analysis.]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [We only

perform a theoretical analysis.]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [N/A] [We only perform a theoretical analysis.]

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach;

and also hyperparameters of your own method)? [N/A] [We only perform a theoretical

analysis.]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [N/A] [We only perform a

theoretical analysis.]

(b) Did you mention the license of the assets? [N/A] [We only perform a theoretical analysis.]

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] [We

only perform a theoretical analysis.]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] [We only perform a theoretical analysis.]

(e) Did you discuss whether the data you are using/curating contains personally identiable

information or oensive content? [N/A] [We only perform a theoretical analysis.]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] [We only perform a theoretical analysis.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] [We only perform a theoretical analysis.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] [We only perform a theoretical analysis.]
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A Handling Mixed Numerical, Ordinal and Categorical Hyperparameters

Assuming we have ℎ HPs, if Θ ⊂ Rℎ , then there are various distances available such as ‖\ − \ ′‖𝜌
(the 𝜌-norm). The more general case is where we have ℎ𝑟 numerical HPs, ℎ𝑜 ordinal HPs, and ℎ𝑐
categorical HPs; ℎ = ℎ𝑛 + ℎ𝑜 + ℎ𝑐 . In that case, Θ ⊂ Rℎ𝑛 ×Oℎ𝑜 × Cℎ𝑐 , and any \ = (\R, \O, \C) ∈
ΘR ×ΘO ×ΘC, where \R ∈ ΘR, \O ∈ ΘO, \C ∈ ΘC respectively denote the continuous, integer and

categorical HPs in \ .

A.1 Distance in Θ

Here we will dene a distance metric 𝑑 : Θ×Θ → R+. Distances overRℎ𝑛 ×Oℎ𝑜
is available, such as

𝜌-norm. Let 𝑑R,O : (ΘR ×ΘO) × (ΘR ×ΘO) → R+ be some such distance. To dene distances over

categorical spaces, there are some techniques such as one described by Oh et al. (2019). Assume

that each of the 𝐶 HPs \C,𝑘 , 𝑘 ∈ [𝐶] have 𝑛𝑘 categories {𝑐𝑘1, 𝑐𝑘2, . . . , 𝑐𝑘𝑛𝑘 }. Then we can essentially

dene a distance between two \C, \
′
C ∈ ΘC as:

𝑑C : ΘC × ΘC → R+, 𝑑C(\C, \ ′C) =
𝐶∑︁
𝑖=1

I(\C [𝑖] ≠ \ ′C [𝑖]). (22)

Denition A.1. We can dene a distance 𝑑 : (ΘR × ΘO × ΘC) × (ΘR × ΘO × ΘC) → R+ between
two HPs \, \ ′ ∈ Θ as

𝑑 (\, \ ′) = 𝑑R,O((\R, \O), (\ ′R, \
′
O)) + 𝑑C(\C, \

′
C) . (23)

Proposition A.1. Given distance metrics 𝑑R,O and 𝑑C, the function 𝑑 : Θ×Θ dened in (23) is a valid

distance metric.

A.2 Continuity in the space of HPs Θ

As stated in Assumptions 3.1 & 3.3, we assume Lipschitz continuity of the loss function 𝐿(\, 𝐷)
and the surrogate loss function 𝑠𝑡 (\ ), 𝑖 ∈ [𝑝] with respect to a continuous \ ∈ Θ ⊂ Rℎ , giving us:

|𝐿(\, 𝐷) − 𝐿(\ ′, 𝐷) | ≤ 𝛾 · ‖\ − \ ′‖, (24)

|𝑠𝑡 (\ ) − 𝑠𝑡 (\ ′) | ≤ 𝜔 · ‖\ − \ ′‖ . (25)

For a more general handling of a HP space Θ consisting of mixed numerical, ordinal and

categorical HPs, we can leverage the notion of “modulus of continuity”. Specically, we can assume

the following:

Assumption A.1. Consider the following increasing concave real-valued functions `𝐿, `𝑠 : R+ → R+
with lim𝑣→0 `𝐿 (𝑣) = `𝐿 (0) = 0 and lim𝑣→0 `𝑠 (𝑣) = `𝑠 (0) = 0. Then we can say that the loss function

𝐿(\, 𝐷) and the surrogate loss function 𝑠𝑡 (\ ) admit `𝐿 and `𝑠 as a moduli of continuity respectively

with respect to the distance metric 𝑑 : Θ × Θ → R+ dened in Denion A.1, implying that

|𝐿(\, 𝐷) − 𝐿(\ ′, 𝐷) | ≤ `𝐿 (𝑑 (\, \ ′)), (26)

|𝑠𝑡 (\ ) − 𝑠𝑡 (\ ′) | ≤ `𝑠 (𝑑 (\, \ ′)) . (27)

Since we assume that `𝐿, `𝑠 are concave, we can say that these functions are sublinear as follows:

∃𝛾1, 𝛾2 ≥ 0 :`𝐿 (𝑣) ≤ 𝛾1𝑣 + 𝛾2∀𝑣 ∈ R+, (28)

∃𝜔1, 𝜔2 ≥ 0 :`𝑠 (𝑣) ≤ 𝜔1𝑣 + 𝜔2∀𝑣 ∈ R+. (29)

These conditions indirectly give us something similar in spirit to the guarantees of Lipschitz

continuity, but is a more rigorous way of achieving such guarantees.
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B Distances between distributions

In this section, we rst discuss a general notion of distance between distributions in §B.1, and then

leverage a more problem-specic notion of distance between distributions in §B.2 to bound the

change in the loss function 𝐿(\, 𝐷) with change in the distribution 𝐷 to 𝐷 ′
.

B.1 Variation of information distance

Here we describe the variation of information distance between distributions.

Denition B.1. For any distributions 𝐷, 𝐷 ′
, let J (𝐷, 𝐷 ′) be the set of all joint distributions such

that 𝐷 and 𝐷 ′
are their respective marginals. Let 𝐻 (·) be the entropy of any distribution. Then the

variation of information distance𝑈 (𝐷, 𝐷 ′) between 𝐷 and 𝐷 ′
is dened as

𝑈 (𝐷, 𝐷 ′) = 𝑉 (𝐷,𝐷 ′) +𝑉 (𝐷 ′, 𝐷), (30)

where 𝑉 (𝐷,𝐷 ′) and 𝑉 (𝐷 ′, 𝐷) are dened as follows:

𝑉 (𝐷,𝐷 ′) = min

𝐽 ∈J (𝐷,𝐷′)
𝐻 (𝐽 ) − 𝐻 (𝐷) (31)

𝑉 (𝐷 ′, 𝐷) = min

𝐽 ∈J (𝐷,𝐷′)
𝐻 (𝐽 ) − 𝐻 (𝐷 ′). (32)

However, for our problem, we do not require such a general notion.

B.2 Proof of Lemma 3.1

For our purposes, we make use of the 1-Wasserstein distance dened as follows:

Denition B.2. For any pair of distributions 𝑃,𝑄 over some domain X , let J (𝑃,𝑄) be the set of
all joint distributions over X × X such that 𝑃 and 𝑄 are the marginals for any joint distribution

𝐽 ∈ J (𝑃,𝑄). Then the 1-Wasserstein distance is dened as:

𝑊1(𝑃,𝑄) := sup

(𝑥,𝑥′)∼𝐽 :𝐽 ∈J (𝑃,𝑄)
‖𝑥 − 𝑥 ′‖ . (33)

Lemma B.1 (Lemma 3.1). For a xed HP \ ∈ Θ and any two data distributions 𝐷, 𝐷 ′, we can show
that

|𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | ≤ 𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷 ′)) , (34)

where 𝑃\ (𝐷) is the distribution of (𝑦, 𝑓\,𝑆 (𝑥)) for (𝑥,𝑦) ∼ 𝐷 and 𝑆 ∼ 𝐷𝑛 and 𝑓\,𝑆 is the model learned
with training set 𝑆 for HP \ ∈ Θ (𝑃\ (𝐷 ′) dened correspondingly),and𝑊1 is the 1-Wasserstein distance.

Proof of Lemma 3.1. By denition of 𝐿(\, 𝐷) in (1), we have a following set of relations:

|𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | =
���E𝑆∼𝐷𝑛E(𝑥,𝑦)∼𝐷ℓ (𝑦, 𝑓\,𝑆 (𝑥)) − E𝑆′∼𝐷′𝑛′E(𝑥′,𝑦′)∼𝐷′ℓ (𝑦 ′, 𝑓 ′

\,𝑆′ (𝑥
′))

��� (35)

=

���E𝑆∼𝐷𝑛E(𝑥,𝑦)∼𝐷E𝑆′∼𝐷′𝑛′E(𝑥′,𝑦′)∼𝐷′

(
ℓ (𝑦, 𝑓\,𝑆 (𝑥)) − ℓ (𝑦 ′, 𝑓 ′\,𝑆′ (𝑥

′))
)��� (36)

≤ E𝑆∼𝐷𝑛E(𝑥,𝑦)∼𝐷E𝑆′∼𝐷′𝑛′E(𝑥′,𝑦′)∼𝐷′𝛽 ·
(𝑦, 𝑓\,𝑆 (𝑥)) − (𝑦 ′, 𝑓 ′

\,𝑆′ (𝑥
′))

 (37)

≤ 𝛽 · E𝑆∼𝐷𝑛E(𝑥,𝑦)∼𝐷E𝑆′∼𝐷′𝑛′E(𝑥′,𝑦′)∼𝐷′

(𝑦, 𝑓\,𝑆 (𝑥)) − (𝑦 ′, 𝑓 ′
\,𝑆′ (𝑥

′))
 , (38)

where the rst pairs of equalities are by denition and the inequality is obtained via the Lipschitz

continuity of the pointwise loss function ℓ : 𝑌 × 𝑌 → R+.
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Given the denition of the distribution 𝑃\ (𝐷) and 𝑃\ (𝐷 ′) in the statement of Lemma 3.1, we

can write the nal inequality above as:

|𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | ≤ 𝛽 · E(𝑧1,𝑧2)∼𝑃\ (𝐷)E(𝑧′
1
,𝑧′
2
)∼𝑃\ (𝐷′) ‖(𝑧1, 𝑧2) − (𝑧 ′

1
, 𝑧 ′

2
)‖ (39)

≤ 𝛽 · sup

(𝑧1,𝑧2),(𝑧′
1
,𝑧′
2
)∼𝐽 :𝐽 ∈J (𝑃\ (𝐷),𝑃\ (𝐷′))

‖(𝑧1, 𝑧2) − (𝑧 ′
1
, 𝑧 ′

2
)‖, (40)

where J (𝑃\ (𝐷), 𝑃\ (𝐷 ′)) is the set of all joint distributions 𝐽 with 𝑃\ (𝐷) and 𝑃\ (𝐷 ′) as their
marginals. By Denition B.2, the above gives us the following result in the statement of the lemma:

|𝐿(\, 𝐷) − 𝐿(\, 𝐷 ′) | ≤ 𝛽 ·𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷 ′)) . (41)

�

C Technical results for §4

C.1 Expected rank when randomly sampling 𝑘 � 𝑇 HP candidates

Theorem C.1. The expected rank when randomly selecting without replacement 𝑘 � 𝑇 out of 𝑇 HP
candidates, the expected rank of the best in 𝑘 is lower bounded by 𝑂 (𝑇/𝑘).

Proof. Let𝐾 denote the indices of the 𝑘 samples {𝑡𝑖 , 𝑖 ∈ [𝑘]}. Then the expected rank can be written

as

E(rank) =
𝑇−𝑘+1∑︁
𝑛=1

𝑛 · Pr(𝑛-th rank ∈ 𝐾,𝑚-th rank ∉ 𝐾,𝑚 = 1, . . . , 𝑛 − 1) (42)

=

𝑇−𝑘+1∑︁
𝑛=1

𝑛 · 𝑘
𝑇

𝑛−1∏
𝑗=1

𝑇 − 𝑘 − 𝑗

𝑇 − 𝑗
=
𝑘

𝑇

𝑇−𝑘+1∑︁
𝑛=1

𝑛 ·
𝑛−1∏
𝑗=1

𝑇 − 𝑘 − 𝑗

𝑇 − 𝑗
(43)

=
𝑘

𝑇

(
1 +

𝑇−𝑘+1∑︁
𝑛=2

𝑛 ·
𝑛−1∏
𝑗=1

𝑇 − 𝑘 − 𝑗

𝑇 − 𝑗

)
(44)

≥ 𝑘

𝑇

©«
1 +

𝑇−𝑘+1∑︁
𝑛=2

𝑛

(
𝑇 − 𝑘
𝑇 − 1

)𝑛−1
︸                       ︷︷                       ︸

𝐵

ª®®®®®®¬
(45)

If we set a = 𝑇−𝑘/𝑇−1, the term 𝐵 above is a arithmetic-geometric series and can be evaluated

according as:

𝐵 = 1 +
𝑇−𝑘+1∑︁
𝑛=2

𝑛a𝑛−1 (46)

=
𝑇 − 1

𝑘2

(
𝑇 − 1 + a𝑇−𝑘

(
(𝑘 − 1)𝑇 − 𝑘2 + 1

) )
(47)

>
(𝑇 − 1)2
𝑘2

, (48)
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where we use the fact that 1 − a = 𝑘/𝑇−1, a > 0 and that 𝑘 � 𝑇 so (𝑘 − 1)𝑇 − 𝑘2 > 0. Hence the

expected rank is lower bounded by

E(rank) ≥ 𝑘

𝑇
· 𝐵 (49)

>
𝑘

𝑇
· (𝑇 − 1)2

𝑘2
=

(𝑇 − 1)2
𝑘𝑇

(50)

∼ 𝑂
(
𝑇

𝑘

)
(51)

This gives us the statement of the theorem. �

C.2 Proof of Theorem 4.1
Theorem C.2 (Theorem 4.1). Given source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], and a resulting pruned search space
Θ̄ ⊂ Θ, let ˆ\ be the result of a 𝑘-shot warm-started HPO for a target HPO task 𝜏 with data distribution
𝐷 and let \★ be the optimal HP for the target task. Then, under Assumption 3.1, the optimality gap is
bounded as:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ min

𝑡 ∈[𝑇 ]:𝜙𝑡 ∈Θ̄

(
𝛾 ·max

\ ∈Θ̄
‖\ − 𝜙𝑡 ‖ + 2𝛽 ·max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
, (52)

where 𝑃\ (𝐷) and 𝑃\ (𝐷𝑡 ) are as dened in Lemma 3.1, and𝑊1 is the 1-Wasserstein distance.

Proof. Let 𝜙𝑡 be some source-task-best HP present in the pruned HP space Θ̄, and let 𝐷𝑡 be the data
distribution of that source task 𝜏𝑡 with 𝜙𝑡 = argmin\ ∈Θ 𝐿(\, 𝐷𝑡 ). Then we have the following by

leveraging Assumption 3.1 and Lemma 3.1:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) = 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷)︸                 ︷︷                 ︸
≤𝛾 ‖\−𝜙𝑡 ‖ (by Assumption 3.1)

+𝐿(𝜙𝑡 , 𝐷) − 𝐿(𝜙𝑡 , 𝐷𝑡 )

+ 𝐿(𝜙𝑡 , 𝐷𝑡 ) − 𝐿(\★, 𝐷𝑡 )︸                     ︷︷                     ︸
≤0 by def.

+𝐿(\★, 𝐷𝑡 ) − 𝐿(\★, 𝐷) (53)

≤ 𝛾 ‖\ − 𝜙𝑡 ‖ + 𝛽 ·𝑊1(𝑃𝜙𝑡 (𝐷), 𝑃𝜙𝑡 (𝐷𝑡 )) + 𝛽 ·𝑊1(𝑃\★ (𝐷), 𝑃\★ (𝐷𝑡 )) (54)

≤ 𝛾 max

\ ∈Θ̄
‖\ − 𝜙𝑡 ‖ + 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )). (55)

Since the above is true for any 𝜙𝑡 ∈ Θ̄, we can choose 𝑡 such that 𝜙𝑡 ∈ Θ̄ that minimizes the

upper bound, giving us the tightest bound and the statement of the theorem. �

C.3 Comparing best case bounds (8) vs (10)

Theorem C.3. For 𝑃\ (𝐷) and 𝑃\ (𝐷𝑡 ) dened as in Lemma 3.1,

max

\ ∈Θ
min

𝑡 ∈[𝑇 ]
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) ≤ min

𝑡 ∈[𝑇 ]
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (56)

Proof. Let us dene the following quantities:

\ ∗ := argmax

\ ∈Θ

(
min

𝑡 ∈[𝑇 ]
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
, (57)

𝑡 (\ ∗) := arg min

𝑡 ∈[𝑇 ]
𝑊1 (𝑃\ ∗ (𝐷), 𝑃\ ∗ (𝐷𝑡 )) , (58)

𝑡∗ := arg min

𝑡 ∈[𝑇 ]

(
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
, (59)

\ (𝑡∗) := argmax

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡∗)) . (60)
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Then we have the following by detion:

max

\ ∈Θ

(
min

𝑡 ∈[𝑇 ]
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
=𝑊1(𝑃\ ∗ (𝐷), 𝑃\ ∗ (𝐷𝑡 (\ ∗) ))

≤𝑊1(𝑃\ ∗ (𝐷), 𝑃\ ∗ (𝐷𝑡∗))

≤𝑊1(𝑃\ (𝑡∗) (𝐷), 𝑃\ (𝑡∗) (𝐷𝑡∗)) = min

𝑡 ∈[𝑇 ]

(
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
.

This gives us the statement of the theorem. �

C.4 Proof of Corollary 4.1
Corollary C.1 (Corollary 4.1). Consider the conditions and assumptions of Theorem 4.1. Then, for
𝑘-shot HPO with the pruned HP space dened in (11) and 𝑘 > 𝑇 , the optimality gap is bounded as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 2𝛽 · min

𝑡 ∈[𝑇 ]
max

\ ∈Θ
𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (61)

Proof. Given the fact that 𝑘 > 𝑇 , we know that 𝜙𝑡 ∈ Θ̄ for all 𝑡 ∈ [𝑇 ] with the pruned HP space Θ̄
dened in (11). Moreover, ‖\ − 𝜙𝑡 ‖ ≤ 𝛿 for all 𝑡 ∈ [𝑇 ]. Then, leveraging (9) in Theorem 4.1, we get

the statement of the corollary by being able to minimize over all 𝑡 ∈ [𝑇 ]. �

C.5 Proof of Corollary 4.2

Theorem C.4 (Sedransk and Meyer (1978)). For a population of size 𝑅 with values {𝑣1, . . . , 𝑣𝑅} ordered
as 𝑣 (1) ≤ 𝑣 (2) ≤ . . . ≤ 𝑣 (𝑅) , let𝑤 (1) ≤ 𝑤 (2) ≤ . . . ≤ 𝑤 (𝑟 ) be an ordered sample of size 𝑟 < 𝑅 randomly
drawn from the population uniformly without replacement. Then, for 1 ≤ 𝐴 ≤ 𝑅 and 1 ≤ 𝑎 ≤ 𝑟

Pr

(
𝑤 (𝑎) ≤𝑊(𝐴)

)
=

𝐴−𝑎∑︁
𝑖=1

(
𝐴 − 𝑖 − 1

𝑎 − 1

) (
𝑅 −𝐴 + 𝑖
𝑟 − 𝑎

)
/
(
𝑅

𝑟

)
. (62)

Corollary C.2 (Corollary 4.2). Consider the conditions and assumptions of Theorem 4.1 and Corol-
lary 4.1. Also, let us denote Δ𝑡 := max\ ∈Θ𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) for all source task 𝜏𝑡 , 𝑡 ∈ [𝑇 ]. Let
Δ(1) ≤ Δ(2) ≤ · · · ≤ Δ(𝑇 ) be an ordering of {Δ𝑡 , 𝑡 ∈ [𝑇 ]}. Then, with probability at least 1 − Y for
Y ∈ (0, 1),

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 2𝛽 · Δ(𝑛 (Y)) , where 𝑛(Y) = min

{
𝑛 ∈ [𝑇 ] :

𝑛−1∑︁
𝑖=0

(𝑇−𝑛+𝑖
𝑘−1 )/(𝑇𝑘) ≥ 1 − Y

}
. (63)

Proof of Corollary 4.2. For our purposes, we are sampling 𝑘 HPs from a population of size 𝑇 , so

mapping it to the statement of Theorem C.4, 𝑟 = 𝑘 and 𝑅 = 𝑇 . Let the values {Δ𝑡 , 𝑡 ∈ [𝑇 ]} of the
whole population be ordered as Δ(1) ≤ Δ(2) ≤ · · · ≤ Δ(𝑇 ) . Let {𝑡𝑖 , 𝑖 ∈ [𝑘]} denote the indices of
the 𝑘 HPs random sampled (without replacement) from the 𝑇 per-source-task HPs. Let the values

{Δ𝑡𝑖 , 𝑖 ∈ [𝑘]} be ordered as Δ̄(1) ≤ Δ̄(2) ≤ · · · ≤ Δ̄(𝑘) .
So we want to nd the smallest rank 𝑛 ≤ 𝑇 such that the probability Pr(Δ̄(1) ≤ Δ(𝑛) ) will at

least 1 − Y. Hence we want

Pr

(
Δ̄(1) ≤ Δ(𝑛)

)
=

𝑛−1∑︁
𝑖=0

(
𝑇 − 𝑛 + 𝑖
𝑘 − 1

)
/
(
𝑇

𝑘

)
≥ 1 − Y, (64)

where we get the rst equality by applying (62) in Theorem C.4. Hence we choose as 𝑛(Y) the
smallest 𝑛 such that Pr(Δ̄(1) ≤ Δ(𝑛) ) will at least 1 − Y as in the denition of the Corollary.

Moreover, ‖\ − 𝜙𝑡𝑖 ‖ ≤ 𝛿 for all {𝑡𝑖 , 𝑖 ∈ [𝑘]} by the denition of Θ̄ in (11) and the fact that

𝜙𝑡𝑖 ∈ Θ̄∀𝑖 ∈ [𝑘]. Then, leveraging (9) in Theorem 4.1, we get the statement of the corollary. �
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C.6 Proof of Corollary 4.3

Corollary C.3 (Corollary 4.3). Consider the conditions and assumptions of Theorem 4.1. Then, for
the pruned HP space dened by picking the best 𝑘 HPs in {𝜙𝑡 , 𝑡 ∈ [𝑇 ]} with respect to the metric
𝑚𝑡 :=

∑
𝑗 ∈[𝑇 ] 𝐿(𝜙𝑡 , 𝐷 𝑗 ) and performing a local search with a radius 𝛿 > 0, the optimality gap is

bounded as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝛾𝛿 + 𝛽 · min

𝑡 ∈[𝑇 ]
©«𝐾 (𝐷, 𝐷𝑡 ) + 1

𝑇

∑︁
𝑗 ∈[𝑇 ]

(
𝐾 (𝐷, 𝐷 𝑗 ) + 𝐾 (𝐷𝑡 , 𝐷 𝑗 )

)ª®¬ , (65)

where 𝐾 (𝐷,𝐷 ′) := max\ ∈Θ𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷 ′)) for any pair of task data distributions 𝐷, 𝐷 ′.

Proof. Let 𝜙𝑡 be some source-task-best HP present in the pruned HP space Θ̄, and let 𝐷𝑡 be the

data distribution of that source task 𝜏𝑡 with 𝜙𝑡 = argmin\ ∈Θ 𝐿(\, 𝐷𝑡 ). Let 𝜙𝑡 ′ ∈ Φ = {𝜙𝑡 , 𝑡 ∈ [𝑇 ]},
where 𝜙𝑡 ′ ∉ Θ̄ and 𝐷𝑡 ′ be the corresponding source task data distribution. This implies that in the

ranked list of HPs,

∑
𝑗 ∈[𝑇 ] 𝐿(𝜙𝑡 , 𝐷 𝑗 ) ≤

∑
𝑗 ∈[𝑇 ] 𝐿(𝜙𝑡 ′, 𝐷 𝑗 ) for any 𝜙𝑡 ∈ Θ̄, 𝜙𝑡 ′ ∉ Θ̄.

Then we have the following:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) = 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷) + 𝐿(𝜙𝑡 , 𝐷) −
1

𝑇

∑︁
𝑗 ∈[𝑇 ]

𝐿(𝜙𝑡 , 𝐷 𝑗 )

+ 1
𝑇

∑︁
𝑗 ∈[𝑇 ]

𝐿(𝜙𝑡 , 𝐷 𝑗 ) −
1

𝑇

∑︁
𝑗 ∈[𝑇 ]

𝐿(𝜙𝑡 ′, 𝐷 𝑗 )︸                                             ︷︷                                             ︸
≤0(see discussion above)

+ 1

𝑇

∑︁
𝑗 ∈[𝑇 ]

𝐿(𝜙𝑡 ′, 𝐷 𝑗 ) −
1

𝑇

∑︁
𝑗 ∈[𝑇 ]

𝐿(𝜙𝑡 ′, 𝐷𝑡 ′)

+ 𝐿(𝜙𝑡 ′, 𝐷𝑡 ′) − 𝐿(\★, 𝐷𝑡 ′) + 𝐿(\★, 𝐷𝑡 ) − 𝐿(\★, 𝐷) (66)

≤ 𝛾 ‖\ − 𝜙𝑡 ‖

+ 1

𝑇
𝛽 ·

∑︁
𝑗 ∈[𝑇 ]

𝑊1(𝑃𝜙𝑡 (𝐷), 𝑃𝜙𝑡 (𝐷 𝑗 ))

+ 1

𝑇
𝛽 ·

∑︁
𝑗 ∈[𝑇 ]

𝑊1(𝑃𝜙𝑡′ (𝐷𝑡 ′), 𝑃𝜙𝑡′ (𝐷 𝑗 ))

+ 𝛽 ·𝑊1(𝑃\★ (𝐷), 𝑃\★ (𝐷𝑡 ′)) (67)

We leverage Assumption 3.1 and Lemma 3.1 above. Note that the above hold for any 𝑡 ∈ { 𝑗 ∈
[𝑇 ] : 𝜙 𝑗 ∈ Θ̄} and 𝑡 ′ ∈ { 𝑗 ∈ [𝑇 ] : 𝜙 𝑗 ∉ Θ̄}. So we can minimize the above bound with respect to 𝑡

and 𝑡 ′. Moreover, noting the denition of 𝐾 (𝐷,𝐷 𝑗 ) := max\𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷 𝑗 )), we have (14) in
the statement of the corollary. �

C.7 Proof of Corollary 4.4

Corollary C.4 (Corollary 4.4). Consider the conditions and assumptions of Theorem 4.1. Then, for the
pruned search space in (15), the optimality gap of 𝑘-shot HPO is bounded by

min

𝑡 ∈[𝑇 ]
©«𝛾 ·

√︄ ∑︁
𝑖∈[ℎ]

_2
𝑖
+ 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

ª®¬ , (68)

where _𝑖 = max

{(
max𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖] − 𝜙𝑡 [𝑖]

)
,
(
𝜙𝑡 [𝑖] −min𝑗 ∈[𝑇 ] 𝜙 𝑗 [𝑖]

)}
.
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Proof. Let 𝜙𝑡 be some source-task-best HP present in the pruned HP space Θ̄, and let 𝐷𝑡 be the data
distribution of that source task 𝜏𝑡 with 𝜙𝑡 = argmin\ ∈Θ 𝐿(\, 𝐷𝑡 ). Note that, with Θ̄ dened in (15),

𝜙𝑡 ∈ Θ̄∀𝑡 ∈ [𝑇 ].
Then we have the following by Lemma 3.1:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) = 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷)︸                 ︷︷                 ︸
(𝑎)

+𝐿(𝜙𝑡 , 𝐷) − 𝐿(𝜙𝑡 , 𝐷𝑡 )

+ 𝐿(𝜙𝑡 , 𝐷𝑡 ) − 𝐿(\★, 𝐷𝑡 )︸                     ︷︷                     ︸
≤0 by def.

+𝐿(\★, 𝐷𝑡 ) − 𝐿(\★, 𝐷) (69)

≤ (𝑎) + 𝛽 ·𝑊1(𝑃𝜙𝑡 (𝐷), 𝑃𝜙𝑡 (𝐷𝑡 )) + 𝛽 ·𝑊1(𝑃\★ (𝐷), 𝑃\★ (𝐷𝑡 )) (70)

≤ (𝑎) + 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (71)

Now we need to bound the term (𝑎). We can bound this by using Assumption 3.1 and the

denition of Θ̄ in (15) as follows:

(𝑎) := 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷) ≤ 𝛾 ‖ ˆ\ − 𝜙𝑡 ‖ ≤ 𝛾 max

\ ∈Θ̄
‖\ − 𝜙𝑡 ‖ = 𝛾

√︄ ∑︁
𝑖∈[ℎ]

_2
𝑖
, (72)

where _𝑖 is as dened in the statement of the corollary. Substituting above in (71) and minimizing

over 𝑡 ∈ [𝑇 ] (since the above bound holds for any 𝑡 ∈ [𝑇 ]) gives us (16) in the statement of the

corollary. �

C.8 Proof of Corollary 4.5

Corollary C.5 (Corollary 4.5). Consider the conditions and assumptions of Theorem 4.1. Then, for the
pruned search space in (17), the optimality gap of 𝑘-shot HPO is bounded by

min

𝑡 ∈[𝑇 ]

(
𝛾 · max

𝑗 ∈[𝑇 ]
‖𝜙𝑡 − 𝜙 𝑗 ‖ + 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 ))

)
. (73)

Proof. The proof of Corollary 4.5 follows along the same strategy as in the proof of Corollary 4.4,

where we arrive at:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷) + 2𝛽 ·max

\ ∈Θ
𝑊1(𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (74)

Then to bound the rst term in the right-hand-side of the above inequality, we utilize the denition

of the convex hull as follows:

(𝑎) := 𝐿( ˆ\, 𝐷) − 𝐿(𝜙𝑡 , 𝐷) ≤ 𝛾 ‖ ˆ\ − 𝜙𝑡 ‖ (75)

≤ 𝛾 max

\ ∈Θ̄
‖\ − 𝜙𝑡 ‖ = 𝛾 max

𝑤1,...,𝑤𝑇 :𝑤𝑗 ∈[0,1],
∑

𝑗 𝑤𝑗=1

 ∑︁
𝑗 ∈[𝑇 ]

𝑤 𝑗𝜙 𝑗 − 𝜙𝑡

 (76)

≤ 𝛾 max

𝑤1,...,𝑤𝑇 :𝑤𝑡 ∈[0,1],
∑

𝑡 𝑤𝑡=1

∑︁
𝑗 ∈[𝑇 ]

𝑤 𝑗 · ‖𝜙 𝑗 − 𝜙𝑡 ‖ (77)

≤ 𝛾 max

𝑗 ∈[𝑇 ]
‖𝜙 𝑗 − 𝜙𝑡 ‖ . (78)

Substituting above in (74) gives us (18) in the statement of the corollary. �
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D Technical details for §5

D.1 Proof of Theorem 5.1

Theorem D.1 (Theorem 5.1). Given source tasks 𝜏𝑡 , 𝑡 ∈ [𝑇 ], and their corresponding surrogate loss
functions 𝑠𝑡 : Θ → R, let ˆ\ be the result of a 𝑘-shot warm-started HPO with the surrogate function
dened as 𝑠 (\ ) := ∑

𝑡 ∈[𝑇 ] 𝛼𝑡 (\ )𝑠𝑡 (\ ) for a target HPO task 𝜏 with data distribution 𝐷 . Let \★ be the
optimal HP for the target task. Then, the optimality gap is bounded as:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) (𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) + |𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) |) . (79)

Proof. Weare considering few-shot HPOwith the surrogatemodel 𝑠 : Θ → R. Sowe assume that the

HPs tried in the few-shot HPO are ones that have a lower surrogate loss values compared to the ones

not tried. More precisely, if we attempted the HPs {\𝑖 , 𝑖 ∈ [𝑘]} in 𝑘-shot HPO, with the nal selected
HP

ˆ\ ∈ {\𝑖 , 𝑖 ∈ [𝑘]}, we know that 𝑠 (\ ) ≤ 𝑠 (\ ′) for any \ ∈ {\𝑖 , 𝑖 ∈ [𝑘]}, \ ′ ∈ Θ \ {\𝑖 , 𝑖 ∈ [𝑘]} by
denition.

Then we have the following bound on the optimality gap:

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) = 𝐿( ˆ\, 𝐷) − 𝑠 ( ˆ\ ) + 𝑠 ( ˆ\ ) − 𝑠 (\★)︸         ︷︷         ︸
≤0 (see disc. above)

+𝑠 (\★) − 𝐿(\★, 𝐷) (80)

≤ 2max

\ ∈Θ
|𝐿(\, 𝐷) − 𝑠 (\ ) |. (81)

Using the denition of 𝑠 (\ ) =
∑
𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) · 𝑠𝑡 (\ ) as the weighted combination of the per-

source-task surrogate loss functions, we can show the following:

|𝐿(\, 𝐷) − 𝑠 (\ ) | =

������𝐿(\, 𝐷) − ∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · 𝑠𝑡 (\ )

������ (82)

=

������𝐿(\, 𝐷) − ∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · 𝐿(\, 𝐷𝑡 ) +
∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · 𝐿(\, 𝐷𝑡 ) −
∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · 𝑠𝑡 (\ )

������ (83)

=

������ ∑︁𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) · (𝐿(\, 𝐷) − 𝐿(\, 𝐷𝑡 )) +
∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · (𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ))

������ (84)

=

������ ∑︁𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) · ((𝐿(\, 𝐷) − 𝐿(\, 𝐷𝑡 )) + (𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ )))

������ (85)

≤
∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ ) · ( |𝐿(\, 𝐷) − 𝐿(\, 𝐷𝑡 ) | + |𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) |) , (86)

where the last inequality leverages the fact that the weights 𝛼𝑡 (\ ) ∈ [0, 1]∀\ ∈ Θ,∀𝑡 ∈ [𝑇 ]. Now
we can leverage Lemma 3.1 to bound the |𝐿(\, 𝐷) − 𝐿(\, 𝐷𝑡 ) | term in (86), and then substitute this

in (81) gives us the bound (19) in the statement of the theorem. �

D.2 Proof of Corollary 5.1

Corollary D.1 (Corollary 5.1). Under conditions of Theorem 5.1 and Assumption 3.2, we bound the
optimality gap as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2𝜖 + 2𝛽 ·max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ )𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) . (87)
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Proof. Given Assumption 3.2, we have a universal bound on the |𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) | ≤ 𝜖 term in the

bound (19) of Theorem 5.1. Plugging this value in (19) and noting that

∑
𝑡 ∈[𝑇 ] 𝛼𝑡 (\ ) = 1∀\ ∈ Θ

gives us the statement of the corollary. �

D.3 Proof of Corollary 5.2

Corollary D.2 (Corollary 5.2). Under conditions of Theorem 5.1 and Assumptions 3.3 & 3.4, and
further denoting by the set Φ𝑡 = {\𝑡,𝑖 , 𝑖 ∈ [𝐾]} the HPs evaluated during the HPO of task 𝜏𝑡 for each
𝑡 ∈ [𝑇 ], we can bound the optimality gap as

𝐿( ˆ\, 𝐷) − 𝐿(\★, 𝐷) ≤ 2𝜖 + 2 ·max

\ ∈Θ

∑︁
𝑡 ∈[𝑇 ]

𝛼𝑡 (\ )
(
𝛽 ·𝑊1 (𝑃\ (𝐷), 𝑃\ (𝐷𝑡 )) + (𝛾 + 𝜔) min

𝑖∈[𝐾 ]
‖\ − \𝑡,𝑖 ‖

)
.

(88)

Proof. Given Assumptions 3.4 and 3.3, we can bound the term |𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) | term in the bound

(19) of Theorem 5.1 as follows:

|𝐿(\, 𝐷𝑡 ) − 𝑠𝑡 (\ ) | ≤ |𝐿(\, 𝐷𝑡 ) − 𝐿(\𝑡,𝑖 , 𝐷𝑡 ) + 𝐿(\𝑡,𝑖 , 𝐷𝑡 ) − 𝑠𝑡 (\ ) | for any 𝑖 ∈ [𝐾] : \𝑡,𝑖 ∈ Φ𝑡 (89)

≤ |𝐿(\, 𝐷𝑡 ) − 𝐿(\𝑡,𝑖 , 𝐷𝑡 ) | + |𝐿(\𝑡,𝑖 , 𝐷𝑡 ) − 𝑠𝑡 (\ ) | (90)

≤ 𝛾 · ‖\ − \𝑡,𝑖 ‖︸         ︷︷         ︸
Assumption 3.1

+|𝐿(\𝑡,𝑖 , 𝐷𝑡 ) − 𝑠𝑡 (\𝑡,𝑖) + 𝑠𝑡 (\𝑡,𝑖) − 𝑠𝑡 (\ ) | (91)

≤ 𝛾 · ‖\ − \𝑡,𝑖 ‖ + |𝐿(\𝑡,𝑖 , 𝐷𝑡 ) − 𝑠𝑡 (\𝑡,𝑖) | + |𝑠𝑡 (\𝑡,𝑖) − 𝑠𝑡 (\ ) | (92)

≤ 𝛾 · ‖\ − \𝑡,𝑖 ‖ + 𝜖︸︷︷︸
Assumption 3.4

+𝜔 · ‖\ − \𝑡,𝑖 ‖︸          ︷︷          ︸
Assumption 3.3

(93)

Since the above holds for any 𝑖 ∈ [𝐾], so we can minimize this over all \𝑡,𝑖 , leveraging proximity to

all HPs experienced during the HPO for the source task 𝜏𝑡 . So minimizing the above with respect

to 𝑖 ∈ [𝐾] and then subtituting this bound in (19) of Theorem 5.1 gives us the bound (21) in the

statement of the corollary. �
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