
Revisiting kd-trees for
Nearest-Neighbor Search
Parikshit Ram (IBM Research AI)
Kaushik Sinha (Wichita State University)

What is nearest-neighbor search?

➔ A set of points

➔ A search query

➔ Measure of similarity

➔ Nearest neighbor search

➔ k-nearest neighbor search

➔ Euclidean nearest-neighbor search

➔ Space partitioning trees -- kd-trees, metric trees, cover trees, PCA trees, ...
◆ Exact; unfavorable theoretical guarantees; empirical performance can be good

➔ Locality preserving hashing schemes -- Locality sensitive hashing (LSH)
◆ Approximate; favorable theoretical guarantees;

empirical performance unpredictable; hard to control precision-recall tradeoff

➔ Data dependent quantization -- Product quantization
◆ Approximate; no theoretical guarantees;

strong empirical performance; good control over precision-recall tradeoff

➔ Similarity graphs -- Hierarchical graph traversal
◆ Approximate; no theoretical guarantees;

strong empirical performance; good control over precision-recall tradeoff

Search techniques

Search with kd-tree

➔ Axis aligned space partition
➔ Search with backtracking depth-first tree traversal
➔ Pros

◆ Exact search
◆ Logarithmic dependence on number of points
◆ Fast in low dimensions
◆ Low memory overhead

➔ Cons
◆ Exponential dependence in data dimensionality
◆ No advantage over brute force in moderate to high dimensions

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel. "An Algorithm for Finding Best Matches in Logarithmic Expected Time." ACM
Transactions on Mathematical Software (TOMS) 3.3 (1977): 209-226.

➔ Index size

➔ Search time complexity

(for small number of dimensions)

Search with ensemble of kd-trees (FLANN)

➔ Space partitioned with randomly generated axis-aligned splits
➔ An ensemble of trees built instead of a single one
➔ Search with defeatist tree traversal across all trees
➔ Pros

◆ Very fast in practice, competitive even in high dimensions
◆ Still low memory overhead

➔ Cons
◆ Approximate, with no theoretical guarantees on search accuracy

Muja, Marius, and David G. Lowe. "Flann, fast library for approximate nearest neighbors." International Conference on Computer Vision Theory and
Applications (VISAPP’09). Vol. 3. INSTICC Press, 2009.

Tree 1 Tree 2

Tree 4Tree 3

Candidates

➔ Index size
➔ Search time

Search with Randomized Partition Trees (RPTree)

➔ Space partitioned with random directions
➔ An ensemble of trees built instead of a single one
➔ Search with defeatist tree traversal across all trees
➔ Pros

◆ Fairly competitive (outperforms LSH) in practice
◆ Rigorous theoretical guarantees on search accuracy

➔ Cons
◆ Relatively high memory overhead
◆ Theoretical runtime not as fast as FLANN

Dasgupta, Sanjoy, and Kaushik Sinha. "Randomized partition trees for exact nearest neighbor search." Conference on Learning Theory. 2013.
Sinha, Kaushik. "LSH vs randomized partition trees: Which one to use for nearest neighbor search?." 2014 13th International Conference on Machine
Learning and Applications. IEEE, 2014.

Tree 1 Tree 2

Tree 4Tree 3

Candidates

➔ Index size
➔ Search time

Our main contributions

➔ Improved search runtime with kd-trees

➔ Improved index size with kd-trees

Randomized rotation + kd-tree (RR:kd-tree)

➔ Random rotate the data
➔ Space partitioned with kd-trees (axis-aligned splits)
➔ An ensemble of pairs of (random rotation + kd-tree)
➔ Search by (random rotation + defeatist tree traversal) across all pairs
➔ Pros

◆ Theoretical search accuracy guarantees equivalent to RPTree (Theorem 1)

➔ Cons
◆ Quadratic dependence on dimension on search runtime and memory overhead

Tree 1 Tree 2

Tree 4Tree 3

Candidates

➔ Index size
➔ Search time

RPTree vs. RR:kd-tree

➔ Search runtime per tree

➔ Index size per tree

Randomized rotation too expensive!

Randomized rotation

For any point

Random rotation matrix

Approximating randomized rotation

Randomized circular convolution

Random circulant matrix Random diagonal
sign matrix

Approximating randomized rotation

can be written as

where

Element-wise product

Circular convolution

Radamacher
random variable

Fast approximate randomized rotation

Fast convolution via Fast Fourier Transform

Gray, Robert M. "Toeplitz and circulant matrices: A review." Foundations and Trends® in Communications and Information Theory 2.3 (2006): 155-239.

FFT

Inverse FFT

Fast approximate randomized rotation

RPTree vs. RC:kd-tree - Improved runtime

➔ Improved search runtime per tree

➔ Improved index size per tree

➔ Theoretical search accuracy guarantee
equivalent to RR:kd-tree, hence equivalent to RPTree
(Theorem 2)

Randomized rotation

For any point

Random rotation matrix

Approximating randomized rotation II
Approximately Gaussian random matrix with FastFood

Le, Quoc, Tamás Sarlós, and Alex Smola. "Fastfood-approximating kernel expansions in loglinear time." Proceedings of the international conference on
machine learning. Vol. 85. 2013.

Approximating randomized rotation II
Approximately Gaussian random matrix with FastFood

Random diagonal sign matrix

Random diagonal Gaussian matrix

Random permutation matrix

Walsh-Hadamard matrix

Approximating randomized rotation II
Approximately Gaussian random matrix with FastFood

Fast approximate randomized rotation II

RPTree vs. FF:kd-tree - Improved runtime II

➔ Improved search runtime

➔ Improved index size

➔ Theoretical search accuracy guarantee
equivalent to RR:kd-tree, hence equivalent to RPTree
(Theorem 3)

Search accuracy performance

➔ Precision recall curves
➔ Baselines

◆ RPTree
◆ Sparse RPTree (4 versions)

➔ Proposed
◆ RR:kd-tree
◆ RC:kd-tree
◆ FF:kd-tree

➔ Code:
https://github.com/rithram/rrkdt

https://github.com/rithram/rrkdt

10 neighbors, maximum leaf size 20

100 neighbors, maximum leaf size 200

Search
time
scaling

Index
size
scaling

Future directions

➔ Improve runtime and memory scaling even further
(while retaining guarantees)

➔ High performance C/C++ implementation with state-of-the-art FFT/FWHT
➔ Explore inverted multi-index for improved search

Thank you!

➔ Contact
◆ p.ram@gatech.edu
◆ Kaushik.Sinha@wichita.edu

➔ Code
◆ https://github.com/rithram/rrkdt

mailto:p.ram@gatech.edu
mailto:Kaushik.Sinha@wichita.edu
https://github.com/rithram/rrkdt

