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ABSTRACT
kd-tree [16] has long been deemed unsuitable for exact nearest-

neighbor search in high dimensional data. The theoretical guar-

antees and the empirical performance of kd-tree do not show sig-

nificant improvements over brute-force nearest-neighbor search

in moderate to high dimensions. kd-tree has been used relatively

more successfully for approximate search [36] but lack theoretical

guarantees. In the article, we build upon randomized-partition trees

[14] to propose kd-tree based approximate search schemes with

O(d logd + logn) query time for data sets with n points in d dimen-

sions and rigorous theoretical guarantees on the search accuracy.

We empirically validate the search accuracy and the query time

guarantees of our proposed schemes, demonstrating the signifi-

cantly improved scaling for same level of accuracy.
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1 MAKING kd-TREE COMPETITIVE
We focus on the ubiquitous and well-studied problem of Euclidean

nearest-neighbor search – for any set of points S ⊂ Rd and any

query q ∈ Rd , find the point in S closest to q with respect to the ℓ2
metric. The brute-force solution of scanning the complete set S for

a single q becomes infeasible for sets with large cardinality (that

is, |S | = n). kd-tree [16] was one of the first space-partitioning tree

index proposed to solve this problem exactly in logarithmic time

(that is, inO(logn) time) using a depth-first tree traversal algorithm

followed by backtracking. The kd-tree is an axis-aligned partition

of the space containing the set S , resulting in a hierarchical index

of hyper-rectangles. However, the kd-tree based nearest-neighbor

search suffered from the “curse of dimensionality” resulting in

performance (empirical and theoretical) equivalent to or worse than
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the brute-force solution in many cases. Subsequently, various other

space-partitioning trees (with related tree-traversal algorithms)

such as metric trees [35], cover trees [10], PCA-trees [34] and more

were explored for exact and approximate nearest-neighbor search.

Recognizing the hardness of exact nearest-neighbor search, es-

pecially in high dimensions, the focus shifted to finding the approx-

imate nearest-neighbors – neighbors which are approximately as

close as exact nearest-neighbors. Locality sensitive hashing (LSH)

is one of the most popular techniques for approximate nearest-

neighbor search [24], with various variants and improvements. The

methods take advantage of randomization to provide worst-case

guarantees for search accuracy and/or query time. An alternate to

LSH are data-dependent schemes such as product quantization [25]

and similarity graphs [22], which have been show to be extremely

efficient empirically. However, these data dependent schemes lack

rigorous theoretical guarantees, making it hard to understand how

well these schemeswork andwhen these schemesmight fail.kd-tree
has also been shown to be empirically competitive for approximate

nearest-neighbor search with the introduction of randomization

and ensembling, resulting in a widely popular FLANN nearest-

neighbor search tool [36]. However, this incarnation of kd-tree still
lacks favorable theoretical guarantees for high dimensional data.

Relatively recently, randomized-partition tree (RPTree) [14] was
proposed for nearest-neighbor search, with theoretical guarantees

on the search accuracy for the O(d logn) defeatist-tree search algo-

rithm (depth-first tree traversal without any backtracking), and an

ensemble of RPTrees were shown to empirically outperform LSH

[40] – it is hard to compare RPTree and LSH theoretically since

their guarantees have different forms (detailed in Section 2).

In this paper, we demonstrate how the theoretical search accu-

racy guarantees of a RPTree can be transferred to a kd-tree with
improved search time scaling. Specifically, we show that:

• A kd-tree built on a randomly rotated version of the data

set S has the same search accuracy guarantees as a RPTree,
leading to aO(d2+logn) search algorithm based on a kd-tree.
• AO(d logd) approximate random rotation of the data allows

kd-tree to retain the above search accuracy guarantees, re-

sulting in aO(d logd+logn)kd-tree based search algorithm–

an improvement over theO(d logn) search time of a RPTree
while possessing the same search accuracy guarantees.

These results allow a kd-tree based nearest-neighbor search scheme

with rigorous theoretical guarantees on the search accuracy and a

time complexity almost linear in d and logarithmic in n.
We discuss the existing literature on nearest-neighbor search and

the relevant background for our proposed schemes in Section 2. We

present the new kd-tree based search schemes with their theoretical

guarantees in Section 3 and present relevant empirical evaluation
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of the proposed schemes in Section 4. Finally, we conclude with the

limitations and the potential future improvements in Section 5.

2 NEAREST-NEIGHBOR SEARCH
Nearest-neighbor search or similarity search is commonly encoun-

tered in computer science (for example, in machine learning, data

mining) as well as in other physical sciences. Assuming that the

items in the set S being searched over have some numeric represen-

tation, the set S of n items is encoded as a subset ofRd . The problem

of exact nearest-neighbor search for any query q ∈ Rd with respect

to a distance (or dissimilarity) function d : Rd ×Rd → R+ is to find
the point p∗ ∈ S such that

p∗ = argmin

p∈S
d(q,p). (1)

The most widely studied version of this problem focuses on the

ℓ2 metric as the distance function (d(q,p) = ∥q − p∥2). Nearest-
neighbor search with general normed metrics are often reduced

to the ℓ2 metric [3, 4] for efficient (approximate) solution. Space-

partitioning tree indices (such as kd-tree [16], metric tree [35])

provided fast exact solutions for low tomoderately high dimensions.

However, their performances degrade in higher dimensions (higher

values of d). One critical reason for the unfavourable performance

of these tree-based exact search schemes is that even though the

algorithm is able to find the nearest-neighbor quite fast, the process

of empirically certifying that the candidate neighbor is in fact the
nearest is computationally very expensive [39].

With the focus on approximate nearest-neighbor search, the

usual procedure involves indexing the set S . For any query q, the
index (in conjunction with an index traversal algorithm) is used

to return a subset Sq ⊂ S , and the brute-force algorithm is used

over Sq to find the approximate nearest-neighbor. The query time

has two major parts: (i) the time to process q through the index

to obtain the candidate neighbors, and (ii) the time to search over

the candidates (possibly brute-force) to find the best candidate for

q. The quality of the search is usually quantified as the recall
1
of

the query’s true nearest-neighborhood. The precision
2
is directly

related to the search efficiency – high precision implies a small (and

high-quality) subset Sq , which means the brute-force algorithm

processes Sq faster. The overall success of any index-based search

scheme is judged by its precision-recall trade-off (if available). Some

common and representative search schemes are:

(i) The construction of binary-space-partitioning trees [5, 12, 16,

30, 36] on the set S in conjunction with a tree-traversal algo-

rithm (such as a depth-first defeatist search algorithm) for any

query q to obtain candidate neighbors.

(ii) Locality preserving hashing of S and q into a table [11, 15, 19,

24], and utilizing multiple hash tables to boost recall.

(iii) The generation of a codebook which quantizes the points in

S in a data-dependent manner such that nearby points are

quantized to the same code [18, 25, 48], and similar codes

indicate points in relatively close proximity.

(iv) The generation of a (sparse) similarity graph between the

points in S [22, 32, 33, 49] followed by a greedy graph traversal
algorithm; these bear similarities to the traditional skip-lists

1
If S∗q is the true neighbor set of q , recall is defined as |S∗q ∩ Sq |/ |S∗q |.

2
The precision term is defined as |Sq ∩ S∗q |/ |Sq |.

(see Ken Clarkson’s survey [12]) used in conjunction with

Orchard’s algorithm [38] or AESA [45].

The hashing based schemes are extremely popular. They have favor-

able theoretical guarantees and empirical performance. The quanti-

zation based methods and the similarity graph based methods are

currently considered the state-of-the-art in terms of empirical per-

formance. However, they lack any theoretical guarantees. FLANN

[36] demonstrated that kd-tree based approximate search can also

be extremely competitive even in high-dimensional data (FLANN

actually uses both kd-tree and k-means tree [17, 37]). However,

FLANN lacks any theoretical guarantees. The results we present

here can be considered as a step towards filling that gap.

2.1 Randomized partition trees for search
RPTree is a binary space-partitioning tree which comes with fa-

vorable theoretical guarantees [14] and is empirically shown to

outperform locality-sensitive hashing based schemes [40]. Whether

RPTree avoids the curse of dimensionality depends on the under-

lying structure of the problem. We cannot directly compare the

theoretical guarantees of RPTree and LSH: With LSH, the guar-

antees are of the following form for the planted nearest-neighbor
problem by solving the point-location in Euclidean ball problem –

for a given ϵ > 0, the search returns all points within a distance of

(1+ϵ) times the true nearest-neighbor distancewith high probability

in time O(nρ ) where ρ < 1, while being polynomial in the ambient

dimensionality d . There are a couple of follow-up comments: (i)

The guarantee requires knowledge of the true nearest-neighbor

distance. In practice, this is handled by guess-and-halve. (ii) This re-

quirement imposes practical issues where some queries have small

or empty candidate sets
3
, while others get large candidate sets,

making it hard to control the precision-recall trade-off.

There has been numerous improvements to LSH based search

over the last two decades. A lot of focus has been on learning

data-dependent hash functions [20, 46, 47] such that the search re-

turns better quality results compared to vanilla LSH. The schemes

focus on learning data-structures/hashes (implicitly learning rep-

resentations) on the data that preserve local neighborhoods while

separating non-neighbors with lowest possible number of hash bits.

On the other hand, a RPTree [14] provides guarantees of the

following form – for a query q and a set S of n points in Rd , with a

search timeO(d logn), the search does not return the exact nearest-
neighbor with probability at most λ where λ ∝ Φ(q, S) where

Φ(q, S) = 1

n − 1

n∑
i=2

∥q − p(1)∥22
∥q − p(i)∥22

, (2)

andp(i) is the i
th

nearest-neighbor of q in S . Φ is called the potential

function
4
. This definition is also extended to the k-nearest-neighbor

problem for k > 1 (Theorem 9(b) in [14]) where the probability that

the recall (of the k neighbors) is not equal to 1 is upper-bounded.

There are a couple of things to note here:

• A small potential function value indicates that the nearest-

neighbor is significantly closer toq than the rest of the points

3
Although this is practically handled via multi-probe LSH [31].

4Φ(q) can be explicitly computed, albeit, at O (dn) cost per q . However, this quantity
does not need to be computed for the purposes of the search.



Figure 1: Illustration of the search with RPTree. The top row
and the bottom left depict different RPTrees on the same
data set S (filled points •) and query (single unfilled point
◦). The bottom right image shows the compiled set of candi-
date neighbors found by the RPTree ensemble for the query.

in S . A large value indicates that all items (including the

nearest-neighbor) are almost equally far away from q.
• The probability of missing the exact nearest-neighbor can be

made arbitrarily small by utilizing multiple RPTrees. Figure
1 illustrates this search procedure. Using L trees boosts the

success probability to 1 − λL with a O(Ld logn) search time.

• A forest of RPTrees allows for fine-grained control over

the precision-recall trade off – L (approximately) balanced

trees with maximum leaf-size n0 always returns at most Ln0
candidates, and users can control the trade-off by varying L.
• A crucial distinction is that RPTree provides a high probabil-

ity guarantee on the exact nearest-neighbor while guaran-
tees for LSH are only on the approximate nearest-neighbor.

However, the original RPTree has O(nd) space complexity which

was subsequently reduced to O(ndρ ) for some ρ ∈ (0, 1) [41] and
O(d logn) [28] using different techniques. A variant of RPTree [23]
was also shown to be empirically very efficient although the precise

search scheme lacks any theoretical guarantees. For L trees with leaf
size n0, the overall search time for RPTree based scheme is naively

O(Ld log(n/n0) + Ldn0). For a small constant n0, the search scales

with O(Ld logn) (See appendix Section A for a detailed discussion

on the choice of n0). In practice, the Ldn0 term can be significantly

reduced by using techniques like voting [23], partial optimized

distance computation and even quantization, while still retaining

the theoretical accuracy guarantees of RPTree. Another important

distinction is that the widely used SimHash [11] and themore recent

near-optimal LSH [2] solve (and provide guarantees) for the angular

nearest-neighbor search, which is equivalent to ℓ2 nearest-neighbor

search if all the points in S have the same norm. In practice, these

are useful for ℓ2 nearest-neighbor search since points close in ℓ2

Figure 2: Illustration of the search with kd-tree on randomly
rotated datasets (RR:KDTree and variants; see Section 3). The
top row and the bottom left depict differentkd-trees (with its
axis aligned splits) on different rotations of the samedata set
S (filled points •) and query (single unfilled point ◦). The bot-
tom right image shows the compiled set of candidate neigh-
bors found by the kd-tree ensemble for the query. This pro-
cedure is different from the one illustrated in Figure 1 for
RPTree, but the results are similar.

are close in angle; the only issue is that the search might return

a lot of false positive candidates, hurting the precision without

affecting the recall. In contrast, the guarantees for RPTree are on
the ℓ2 nearest-neighbor problem.

A connection was made between random-projection tree [13]

and kd-tree by Vempala, 2012 [43] – it was shown that a kd-tree
built on a data set after a randomized rotation adapts to the intrinsic

dimensionality (specifically, the Assouad dimension [6]). A binary

space partitioning tree is said to adapt to the intrinsic dimensionality
d ′ < d if the diameter of any node in the tree halves after O(d ′)
splits. The result was in a flavor similar to the intrinsic dimension

adaptivity of the random-projection trees proposed by Dasgupta

& Freund, 2008 [13] while preserving the axis-aligned splits of the

kd-tree. The adaptivity guarantees of the random-projection tree

was in terms of a notion of intrinsic dimensionality known as the

local covariance dimension. Neither Vempala, 2012 [43] nor Das-

gupta & Freund, 2008 [13] explicitly focused on nearest-neighbor

search. The general understanding was that better adaptivity to

the intrinsic dimension leads to better search performance, but an

explicit (theoretical) connection was never made [44].

The RPTree (randomized partition tree) proposed by Dasgupta

& Sinha, 2013 [14] for search is very similar to the aforementioned

random-projection tree proposed by Dasgupta & Freund, 2008 [13] –

there are subtle differences, mostly because they are geared towards

different explicit goals. In the following section, we present akd-tree
based search scheme that retains the search accuracy guarantees

of RPTree while achieving an improved search time scaling.



Algorithm 1: Tree indexing of set S with preconditioner P(·)
and the node splitting rule ChooseRule (P(·) and ChooseRule
for different trees are presented in Table 1 and Algorithm 2).

1 Tree T ← CreateIndex (S,n0, P(·))
2 Function CreateIndex: (S,n0, P(·)) → T
3 S ′ ← {P(x) : x ∈ S} // precondition data

4 l ← 0 // start building at level 0

5 T ← MakeTree (S ′,n0, 0) // build tree

6 return T

7 end
8 Function MakeTree: (S,n0, l) → T
9 if |S | ≤ n0 then

10 Make leaf node T such that ST ← S

11 else
12 Rule ρ(·) ← ChooseRule (S, l) // node split rule

13 Sl ← {x ∈ S : ρ(x) = 0}
14 Tl ← MakeTree (Sl ,n0, l + 1) // left subtree

15 Sr ← S \ Sl
16 Tr ← MakeTree (Sr ,n0, l + 1) // right subtree

17 T ← (ρ(·),Tl ,Tr )
18 end
19 return T

20 end

Table 1: Preconditioners and node splitting rules for differ-
ent trees (the variables used here are defined in the text; dif-
ferent choices for ChooseRule are detailed in Algorithm 2).

Method Preconditioner P(x) ChooseRule

RPTree [14] x GaussianRP
SpGa:RPT [41] HdDx SparseGaussianRP

RR:KDTree Γx KDTreeSplit
RC:KDTree Dx ⊛ γ KDTreeSplit
FF:KDTree HdGΠHdDx KDTreeSplit

2.2 RPTree construction and search algorithms
In this subsection, we present the precise algorithms for RPTree
and our proposed schemes. The generic tree construction is pre-

sented in Algorithm 1 and the defeatist tree search is presented

in Algorithm 3. The tree construction is preceded by a precondi-

tioning step (Algorithm 1, line 3) where the data is modified in a

pairwise-distance preserving way. Different space partitioning poli-

cies (tree node splitting rules ChooseRule) are presented in Algo-

rithm 2 – GaussianRP function (line 2) corresponds to the original

RPTree [14], SparseGaussianRP (p) routine (line 10) corresponds
to a sparse RPTree (SpGa:RPT) with a sparsity parameter p ∈ (0, 1]
[41], and a simplified splitting policy of a kd-tree is presented in

KDTreeSplit (line 19). The different choices for preconditioning

are presented in Table 1.

The notation used in Table 1, Algorithms 1 - 3, and subsequently

in the text are as follows:N,U, B and R denote the Gaussian, Uni-

form, Bernoulli and Radamacher distributions respectively. P : Rd →

Algorithm 2: Definitions of different node splitting rules

ChooseRule used in the tree construction algorithm de-

scribed in Algorithm 1 for a set S at any tree level l (for

SparseGaussianRP, p ∈ (0, 1] controls the sparsity level).

1 Node splitting rule ρ(·) ← ChooseRule (S, l)
2 Function GaussianRP: (S, l) → ρ(·)[14]
3 Sample random vectorw ∈ Rd : wi ∼ N(0, 1)
4 V ← {w⊤x ∀x ∈ S}
5 Sample β ∼ U(1/4, 3/4)
6 v ← β-th fractile of V

7 ρ(x) ← I(w⊤x > v)
8 return ρ(·)
9 end

10 Function SparseGaussianRP (p): (S, l) → ρ(·)[41]
11 Sample vectorw ∈ Rd : wi ∼ N(0, 1)
12 Sample diagonal matrix B such Bii ∼ B(p)
13 V ← {(Bw)⊤x ∀x ∈ S}
14 Sample β ∼ U(1/4, 3/4)
15 v ← β-th fractile of V

16 ρ(x) ← I((Bw)⊤x > v)
17 return ρ(·)
18 end
19 Function KDTreeSplit: (S, l) → ρ(·)[Section 3]
20 i ← l mod d

21 V ← {xi ∀x ∈ S} // xi i-th coordinate of x

22 Sample β ∼ U(1/4, 3/4)
23 v ← β-th fractile of V

24 ρ(x) ← I(xi > v)
25 end

Rd is the preconditioning function.Hd ∈ {−1,+1}d×d is the Walsh-

Hadamard matrix (see Equation (5)). D is a diagonal matrix with

Dii ∼ R. Γ ∈ Rd×d is a random rotation matrix with Γi j ∼ N(0, 1).
⊛ is the circular convolution operator (see Equation (3)). γ ∈ Rd
is a random vector with γi ∼ N(0, 1). G is a diagonal matrix with

Gii ∼ N(0, 1). Π ∈ {0, 1}d×d is a random permutation matrix.

3 RANDOM ROTATION + kd-TREE
Building upon Vempala, 2012 [43], we use the same scheme of

randomly rotating the data set S before building the kd-tree. Once
S is rotated via a multiplication to a random matrix Γ, the kd-tree
is built using MakeTree (Algorithm 1), where ChooseRule is set as

KDTreeSplit (Algorithm 2, line 19), giving us RR:KDTree (Table

1). Query processing requires a randomized rotation of q followed

by DefeatistTreeSearch (Algorithm 3) on the kd-tree with Γq.
This search procedure is illustrated in Figure 2. The randomized

rotation takes O(d2) time, and the defeatist search with kd-tree
takesO(logn) time, leading to aO(d2 + logn) query time compared

to the O(d logn) search time of the original RPTree.
Although we will subsequently show that RR:KDTree possesses

the same theoretical guarantees on search accuracy as RPTree, the
query time bound of O(d2 + logn) quickly becomes prohibitive for

moderately high dimensions because of the d2 term. To circumvent



Algorithm 3: Defeatist search algorithm for query q with tree

T and preconditioner P(·). This search algorithm is employed

for all the binary space-partitioning trees considered here.

1 Candidate neighbor set Sq ← SearchIndex (q, P(·),T )
2 Function SearchIndex: (q, P(·),T ) → Sq
3 Sq ← DefeatistTreeSearch (P(q),T )
4 return Sq
5 end
6 Function DefeatistTreeSearch: (q,T ) → Sq
7 if T is a leaf node then
8 Sq ← ST // all points in leaf node

9 else
10 ρ(·),Tl ,Tr ← T // Node split rule & children

11 if ρ(q) = 0 then // go left
12 Sq ← DefeatistTreeSearch (q,Tl )
13 else // go right
14 Sq ← DefeatistTreeSearch (q,Tr )
15 end
16 end
17 return Sq
18 end

this issue, we present two efficient ways of approximating the

randomized rotation while retaining the guarantees of RPTree.

3.1 Randomized circular convolution + kd-tree
Circular convolution [21] between vectors x ,γ ∈ Rd is defined as

x ⊛ γ = x⊤


γ1 γd γd−1 · · · γ2
γ2 γ1 γd · · · γ3
· · · · · · · · · · · · · · ·
γd γd−1 γd−2 · · · γ1

 . (3)

For a random Gaussian vector γ , x ⊛ γ emulates a randomized

rotation with the restriction that the rows of the rotation matrix

are not independent. The main motivation behind using circular

convolution is that Equation (3) can be efficiently computed as

x ⊛ γ = F−1 (F(x) ◦ F(γ )) , (4)

where ◦ is the Hadamard product (elementwise multiplication of

vectors), and F(·) is the Discrete Fourier Transform operator which

can be computed in O(d logd) time with Fast Fourier Transform

(FFT) compared to the O(d2) Γx operation in RR:KDTree. Circular
convolution has previously been used in the context of nearest-

neighbor search for learning binary embeddings [50].

For our purpose, we consider P(x) = Dx ⊛γ as the approximate

randomized rotation operation of any pointx (D andγ are as defined

in Section 2.2). We call this scheme RC:KDTree. For any query q,
the P(q) = Dq⊛γ can be performed inO(d logd) time, with kd-tree
DefeatistTreeSearch requiring O(logn) time, giving us a final

query time complexity of O(d logd + logn) for RC:KDTree.

3.2 FastFood[29] + kd-tree
Le et al., 2013 [29] build upon the fast Johnson Lindenstrauss trans-

form [1] in the context of approximating expansions in kernel

methods. Specifically, for diagonal matrices D and G, random per-

mutation matrix Π and Walsh-Hadamard matrix Hd (as defined in

Section 2.2), they introduce the “FastFood” matrix HdGΠHdD as a

surrogate for a dense Gaussian matrix and show that “any given

row of the matrix HGΠHD is i.i.d. Gaussian” (Section 3.2 in [29]).

The matrix Hd is defined recursively with H1 := 1 as:

Hm =
1

√
2

[
Hm/2 Hm/2
Hm/2 −Hm/2

]
∀m = 2

l , l ∈ Z+. (5)

This is assuming d = 2
l
for some integer l > 0. This can be achieved

in general by padding the points with additional columns of zeros.

For our purpose, we approximate the randomized rotation opera-

tion, a multiplication with a dense random matrix Γ, with the multi-

plication toHdGΠHdD. This gives us FF:KDTree– approximate ran-

domized rotation via FastFood followed by DefeatistTreeSearch
(Algorithm 3) on the kd-tree. For any query q, it can be shown

that the HdGΠHdDq operation can be performed in O(d logd)
time, and the tree search takes O(logn), giving us a query time

of O(d logd + logn) similar to RC:KDTree.

3.3 Properties of randomized kd-tree
In this subsection, we formally present the time complexity and

search accuracy guarantees for the proposed schemes. For search

accuracy, we show that the proposed schemes possess the same

guarantees as the original RPTree. Theorem 1 demonstrates how

the search accuracy guarantee of RR:KDTree is identical to that

of RPTree, while Theorems 2 and 3 extend this result to provide

similar guarantees for RC:KDTree and FF:KDTree.

Theorem 1. Given any query q ∈ Rd , RR:KDTree requires O(d2)
preconditioning time, O(log(n/n0)) tree traversal time, O(dn0) point
processing time per tree and ensures that the failure probability of
finding the exact nearest neighbor of q is identical to that of RPTree.

Proof. For the random rotation matrix Γ in any RR:KDTree

(Γi j i.i.d. N(0, 1)), let Γ1, . . . , Γd ∈ Rd be the d rows of Γ. For any

x ∈ S , the ith coordinate of Γx ∈ Rd can be interpreted as pro-

jection of x onto a random projection direction Γi , whose entries
are i.i.d. N(0, 1). Therefore, at any internal node of RR:KDTree, if

the KDTreeSplit function chooses the ith coordinate of the ran-

domly rotated S (via Γ), then during RR:KDTree construction, this
internal node is split into left and right child nodes based the β
fractile of the projected points corresponding to this internal node

onto Γi . From RPTree perspective, this can be thought of as storing

a random projection direction Γi at this internal node and split-

ting of this node into left and right child nodes by projecting the

points corresponding to this node onto Γi and based on β frac-

tile v of the projected points. Similarly, while answering a query

with DefeatistTreeSearch, RR:KDTree routs the query q at this

internal node (towards left or right child node) based on the ith

coordinate of Γq by comparing it with the β fractile v of this node.

Again, from RPTree perspective, this can be thought of as project-

ing q onto the stored random projection direction Γi at this node
and comparing this projected value with v . Therefore, the proba-
bility that q is separated from its nearest neighbor at this internal

node of the RR:KDTree is exactly same as the probability that q
is separated from its nearest neighbor at any internal node of an



Table 2: Indexing and search costs of the different randomized partition trees (Precond.→ Preconditioning, trav.→ traversal,
proc.→ processing). The leaf size for each tree is at most n0. For sparse RPTree, p ∈ (0, 1] controls the projection vector sparsity.

Method Tree construction time Index size Precond. time Tree trav. time Leaf proc. time

RPTree (nd + n logn) log(n/n0) d log(n/n0) + (n/n0) + n − d log(n/n0) dn0
SpGa:RPT nd logd + (npd + n logn) log(n/n0) d + pd log(n/n0) + (n/n0) + n d logd pd log(n/n0) dn0
SpRa:RPT nd logd + (npd + n logn) log(n/n0) d + pd log(n/n0) + (n/n0) + n d logd pd log(n/n0) dn0
RR:KDTree nd2 + (n logn) log(n/n0) d2 + (n/n0) + n d2 log(n/n0) dn0
RC:KDTree nd logd + (n logn) log(n/n0) d + (n/n0) + n d logd log(n/n0) dn0
FF:KDTree nd logd + (n logn) log(n/n0) d + (n/n0) + n d logd log(n/n0) dn0

RPTree which represents the same set of points from S and utilizes

Γi as random projection direction. The only difference between

RPTree and RR:KDTree is that while the random projection direc-

tion at each internal node of an RPTree is different (thus requiring

O(n) distinct projection directions), in case of RR:KDTree only d
random projection directions are implicitly used. However, since

the failure probability of finding the exact nearest-neighbor of q
by either RPTree or RR:KDTree is bounded from above by a union

bound of the probabilities that q is not separated from its nearest

neighbor at any internal node along the query’s path from root to

leaf, this probability bound is identical in both cases.

Finally, the preconditioning time is O(d2) for the matrix-vector

multiplication Γq; the tree traversal time is O(log(n/n0)) since the
tree depth is O(log(n/n0)) and constant computation is required

during query processing at any internal node along q’s path from

root to leaf; O(dn0) time is required for the explicit distance com-

putation between q and the n0 points in the leaf q is routed to. □

Theorem 2. Given any q ∈ Rd , RC:KDTree requires O(d logd)
preconditioning time, O(log(n/n0)) tree traversal time, O(dn0) point
processing time per tree and ensures that the failure probability of
finding the exact nearest neighbor of q is identical to that of RPTree.

Proof. Let D and γ be as defined in Section 2.2. For any x ∈ S ,
the ith coordinate of Dx ⊛ γ ∈ Rd is (Dx)⊤σi (γ ), where σi (γ )
represents a circular permutation of γ , in particular the ith column

of the matrix in equation (3). Now (Dx)⊤σi (γ ) = x⊤(diaд(D) ◦
σi (γ )), where ◦ represents Hadamard product and diaд(D) ∈ Rd is

the vector of the diagonal elements of D. DenotingWi = diaд(D) ◦
σi (γ ), the ith coordinate of (Dx⊛γ ) is obtained by projecting x onto

Wi . Using Lemma 1, we show that coordinates ofWi are i.i.d.N(0, 1).
Subsequently, we use the same argument presented in the proof of

Theorem 1 to demonstrate that the probability that RC:KDTree fails
to find exact nearest neighbor of q is identical to that of RPTree.

The preconditioning Dq ⊛ γ via circular convolution operation

can be computed inO(d logd) time with FFT during query process-

ing. The tree traversal time and point processing times are same as

in Theorem 1, giving us the statement of the theorem. □

Theorem 3. Given any q ∈ Rd , FF:KDTree requires O(d logd)
preconditioning time, O(log(n/n0)) tree traversal time, O(dn0) point
processing time per tree and ensures that the failure probability of
finding the exact nearest neighbor of q is identical to that of RPTree.

Proof. Let Hd ,G,Π,D be as defined in Section 2.2 and let A ∈
Rd×d be such that A = HdGΠHdD. Let Ai ∈ Rd be the ith row of

A. Le et al., 2013 (Section 3.2, [29]) show that coordinates of Ai are
i.i.d.N(0, 1). Therefore, for any x ∈ S (respectively, q ∈ Rd ), the ith
coordinate of Ax (respectively, Aq) can be obtained by projecting

x (respectively, q) onto random projection direction Ai . With this

interpretation and using the argument presented in the proof of

Theorem 1, we can say that the probability that FF:KDTree fails to

find exact nearest neighbor of q is identical to that of RPTree.
As shown in [29], the preconditioning computationHdGΠHdDq

can be computed in O(d logd) time – the multiplication with the

diagonal matrices D and G can be done in O(d) time; the permu-

tation of a vector of length d (via implicit multiplication with the

permutation matrix Π) takes O(d) time; the multiplication to the

Walsh-Hadamard matrix Hd can be done in O(d logd) time via the

Fast Walsh-Hadamard Transform. The tree traversal time and point

processing times are same as in Theorem 1. □

Lemma 1. Let u ∈ Rd be a random vector whose entries are i.i.d.
Radamacher variables and let v ∈ Rd be a random vector whose
entries are i.i.d. N(0, 1). Then y = u ◦ v is a random vector in Rd

whose entries are i.i.d.N(0, 1), where ◦ represents Hadamard product.

Proof. First we show that each coordinate of y follows N(0, 1).
Let yj be the j

th
coordinate of y, then yj = ujvj . For any scalar t :

Pr(yj ≤ t) = E
(
Pr

(
vj ≤ t | ui

) )
= Pr(vj ≤ t) Pr(uj = 1) + Pr(−vj ≤ t) Pr(−uj = 1)

=
1

2

Pr(vj ≤ t) + 1

2

Pr (−vj ≤ t)

= Pr(vj ≤ t)
where the last equality follows from the fact that vj and −vj both
follow N(0, 1). Therefore, yj and vj have the same distribution.

Next, for any i , j note that yi = uivi and yj = ujvj . Since
ui ,uj ,vi ,vj are independent of each other, yi and yj are indepen-
dent. Therefore, all coordinates of y are pairwise independent. □

The query time complexities of RR:KDTree and its variants are

summarized in Table 2 alongside the guarantees of existing RPTree
and variants. We also present the tree construction time complexity

and tree space complexity for completeness but skip the formal

proof since these can be obtained through standard analyses. The

complexities indicate improvements in both time and space for the

proposed RC:KDTree and FF:KDTree relative to RPTree.

4 EMPIRICAL EVALUATIONS
In this empirical section, we focus on demonstrating that the pro-

posed kd-tree based tree index is as effective as the theoretically



(a) k = 10, n0 = 10 (b) k = 10, n0 = 20

(c) k = 100, n0 = 100 (d) k = 100, n0 = 200

Figure 3: Recall vs. Precision curves for RPTree based schemes and the 3 proposed schemes for k-nearest-neighbor search with
different values of k and leaf size n0 for each tree for all the methods. The curves are generated with L = 50 trees.

guaranteed RPTree with respect to the nearest-neighbor search

accuracy with improved scaling. We have limited the scope of the

evaluation to methods having rigorous theoretical guarantees. We

skip comparison to LSH since it has been demonstrated that the orig-

inal RPTree significantly outperforms LSH while providing a much

more fine-grained control over the accuracy-efficiency trade-off

[40]. A more thorough empirical evaluation would involve compar-

isons to FLANN [36], product-quantization and similarity graph

based methods. These methods have demonstrated great empirical

performance but are limited in theoretical guarantees. Hence, a fair

comparison to these schemes need to be in the form of accuracy

(recall) vs. efficiency (number of queries per second) trade off [8].

However, the actual run times are very dependent on the imple-

mentation – a highly optimized implementation in C/C++ making

use of SSE/SSE2/AVX intrinsics
5
can be significantly faster than a

Python implementation. For this evaluation, we implement all the

considered schemes in Python (for the ease of prototyping). We

consider the original RPTree as well as the SpGa:RPT [41] and a

variant of it where the Gaussian random projections (Algorithm

2, line 11) are replaced by Radamacher random variables to give

us SpRa:RPT (sparse Radamacher RPTree). This is similar to the

randomized partition trees considered by Hyvönen et al., 2016 [23]

(barring the HdDx preconditioning in SpGa:RPT (Table 1, [41])).

For the purposes of evaluation, we consider the column sampling

probability (the sparsity paramter) (i) p = 1/3 to give us SpGa:RPT

5
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

(1/3) & SpRa:RPT (1/3), and (ii) p = 1/10 for SpGa:RPT (1/10) &

SpRa:RPT (1/10)) for the above sparse RPTree variants based on the

empirical evaluation by Sinha & Keivani, 2017 [41].

Implementation details. All the search schemes considered in

this empirical evaluation are implemented in the high-level Python

language (version 2.7)
6
. We use the numpy library for basic linear

algebra. For the F and F−1 operations needed in RC:KDTree, we
use numpy.fft. For the Fast Walsh-Hadamard transform, we use

the extremely optimized Fast-Fast Hadamard Transform (FFHT7)
implementation. All the evaluations were run single-threaded on a

24 core machine with 120GB memory running Ubuntu 18.04.

Datasets. We use various open datasets [7]. The dataset sizes

are listed in Table 3 (see appendix Section B). The MNIST, Fashion

MNIST, SIFT and GIST datasets are obtained from the ANN bench-

mark for Euclidean nearest-neighbor search [8]. We use a subset of

the 80 million tiny images [42] to create the Tiny Images set.

4.1 Recall vs. Precision
In this comparison, we consider the same values of (L,n0) for all
methods and only perform the defeatist search without sorting
the candidates we get from defeatist search. So, for l trees, the
search time of the defeatist search with RPTreewould beO(ld logn)
instead of O(ld logn + ldn0). The reason for this is because the

6
https://github.com/rithram/rrkdt

7
https://github.com/FALCONN-LIB/FFHT

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/rithram/rrkdt
https://github.com/FALCONN-LIB/FFHT


constant term dn0 is same for all the methods we are considering in

our empirical evaluation. Then we compute the precision and recall

for each l = 1, . . . ,L to generate the recall vs. precision curves

for all methods. Figure 3 presents the results on the 8 datasets for

k-nearest-neighbor search, with trees of leaf size at most n0 and
L = 50 for different values of k,n0. These results indicate that there
is no apparent difference in the search accuracy-efficiency trade-offs

between the proposed schemes and the baselines, the theoretical

guarantees for RR:KDTree, RC:KDTree and FF:KDTree are validated
in practice. The area under the curves for k = 100,n0 = 100 are

presented in the appendix C in Table 4 to demonstrate how similar

the recall vs. precision trade off performances are.

4.2 Tree traversal time scaling with n and d
Combining the SIFT, GIST and Tiny Images data sets, we create data

sets withn = 1024, 2048, 4096, . . . , 1000000 andd = 2
l , l = 7, . . . , 11

to evaluate the scaling of the proposed schemes and the baseline(s)

(see dataset details in appendix Section B). We used a subset of

size 25000 as the set of queries. The purpose of this evaluation is

to show the combined scaling of the search algorithms (or rather

implementation of the algorithms) with changing d and n. For this
purpose, we consider the query time of all algorithms atd = 128,n =
1024 as their respective baselines and study the relative increase

in run time with increasing d as well as n. For this evaluation, we
only focus on the RPTree baseline (with O(d logn) scaling) and
the proposed RC:KDTree and FF:KDTree (with O(d logd + logn)
scaling). The scaling is presented in Figure 4. The values reported

in the results are the ratios of the actual query run time with that

of the method at n = 1024,d = 128 with increasing n (horizontal

axis) and increasing d (different markers). This allows us to see the

effect of increasing n and d collectively.

The results demonstrate the favorable scaling of the proposed

RC:KDTree and FF:KDTree with respect to n for a fixed d relative

to that of RPTree. This is because of the fact, that for RC:KDTree
and FF:KDTree, the O(d logd) preconditioning is independent of

n, and the subsequent tree traversal cost for the kd-tree scales

only at O(logn) independent of d . In contrast, RPTree query time

increases (relatively) more significantly because of the O(d logn)
scaling where the cost of increasing n gets multiplied by d .

The scaling with respect to d for the proposed RC:KDTree and
FF:KDTree is not favorable relative to RPTree. However, one of the
major reasons for this is that the actual runtimes are very dependent

on the implementations, and we made no attempt to optimize our

implementation beyond the available reference tools. The vector-

vector dot-product operation, which is the main computational

step is RPTree is extremely optimized in the standard linear algebra

packages like numpy– the vector-vector or the vector-matrix multi-

plication is a super cache friendly operation because it is possible

to stream all the operations straight through all the required mem-

ory without any cache misses, and potentially few waits on cold

data. This is demonstrated by the d-scaling of the implementation
of the O(d logn) RPTree for a fixed n – increasing d 16× (from 128

to 2048) only increases the actual run time by less than 2× even

though the run time complexity of the RPTree defeatist search is

pretty tight. In contrast, the FFT reference implementation is numpy
is not optimized. For example, the sin/cos tables involved in the

Figure 4: Scaling of RPTree, RC:KDTree and FF:KDTree with
respect to d and n. The query run times are re-scaled so that
the ratio for n = 1024,d = 128 is equal to 1. For this scaling
experiment, we considered trees with leaf size n0 = 5.

FFT operations are not cached between calls to FFT/inverse-FFT

for vectors of same length. We can have a more efficient imple-

mentation of RC:KDTree by utilizing the highly optimized FFTW

library. We discuss and demonstrate the implication of different

implementations in detail in the Appendix D.

4.3 Index size scaling with n and d
The tree index size scaling is presented in Figure 6 in appendix Sec-

tion E. The results indicate that for smaller values of n, RC:KDTree
and FF:KDTree have much smaller tree index size in memory com-

pared to RPTree. But as n grows, the index size is dominated by the

terms linear in n, making the index sizes of all three schemes very

close to each other. Note that the proposed schemes RC:KDTree
and FF:KDTree do not ever have larger index size than RPTree.

5 CONCLUDING REMARKS
We proposed a way to make kd-tree based nearest-neighbor search

theoretically (and empirically) competitive in high dimensions, re-

sulting in a scheme withO(d logd + logn) query time. This scheme

can be used for improved theoretical and empirical scaling of

RPTree for the problem of maximum inner-product search [27, 28].

However, this is still some ways off from theO(logn) query time of

kd-tree in FLANN [36] not withstanding the lack of any theoretical

guarantees for FLANN. We believe that our proposed scheme can

be improved upon to get a kd-tree based search scheme with close

toO(logn) scaling while still retaining the search accuracy guaran-

tees. In addition to improved theoretical guarantees, we also plan

to create and open-source an optimized implementation of the pro-

posed schemes that is implemented in a low-level language (such

as C/C++) and makes use of most efficient available libraries (such

as FFTW for FFT and inverse FFT). Moreover, we plan to explore

(i) auxilliary information and priority functions [26] to improve

the overall space complexity, and (ii) inverted multi-index [9] with

kd-tree for improved search efficiency.
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A CHOICE OF LEAF SIZE n0
The leaf sizen0, in some sense, balances between a global search and

a local search. The whole idea is to quickly identify a local region

(which most likely will contain nearest neighbors) and perform ex-

haustive search there, as opposed to performing a linear scan (global

search). Of course making n0 too small will make the local region

uninformative (may be too small and may not contain true nearest

neighbors) while making n0 too big would result in unnecessary

exhaustive search within this local region increasing query time.

While this problem sounds kind of similar to the same issue that

LSH faces (in terms of requiring knowledge of true nearest-neighbor

distance or else ending up with disparate candidate set sizes for

different queries), typically effect of n0 on search accuracy is quite

benign. Assuming data is generated from an underlying probability

distribution which is a “doubling measure” with doubling constant

d0 (that is, probability mass of any ball can be covered by 2
d0

balls

of half the radius, where d0 is much much smaller than ambient

data dimension d), a constant failure probability of finding all true

k nearest neighbors requires n0 ∼ O
(
(d0k)d0

)
(see Theorem 9 in

[14] for exact dependence).

B DATASET DETAILS
The sizes of the datasets used for the empirical evaluation are

presented in Table 3.

Table 3: Data sets for evaluation. The last 4 datasets are from
the ANN-Benchmarks.

Data set |R | |Q | d

Letter recognition 18000 2000 16

Corel 56615 10000 89

Aerial 265465 10000 60

Tiny images 1000000 10000 384

MNIST 60000 10000 784

Fashion MNIST 60000 10000 784

SIFT 1000000 10000 128

GIST 1000000 1000 960

Dataset details for the scaling experiment. For d = 128, we just

used SIFT. For d = 256, we randomly sampled 256/384 columns

in the Tiny Images set. For d = 512, we column-subsampled the

GIST dataset. For d = 1024, we combined SIFT and GIST and then

subsampled 1024 out of the 1088 columns. For d = 2048, we used 3

million rows from the 80 million tiny images set, and concatenated

them to get 1 million rows with 1152 columns, and then concate-

nated that to the 1024 column set of GIST + SIFT and subsampled

2048 out of the 2176 columns. The query set was created in a similar

consistent manner to ensure that there was no overlap in the data

between the query and reference sets.

C FURTHER RESULTS ON RECALL VS.
PRECISION

The area under the recall-precision curves in Figure 3 is presented

in Table 4.

Figure 5: Comparison of implementations of different pre-
conditioning functions listed in Table 5.

D IMPLEMENTATION DETAILS
Herewe present the actual runtimes of the different preconditioning

operations we have considered in the different methods. Table 5

details the operationswewill be focusing on. The goal of this section

is to show that the actual run time of the implementations can be

significantly different than their theoretical runtimes because of

optimizations in the implementation. The results in Figure 5 indicate

that theO(d2)MatMul operation (used by RR:KDTree) is the fastest
for up to d ≈ 2

7
(the O(d log(n/n0)) query time of RPTree will

only be faster than O(d2)) and only passes the O(d logd) CC_x
operation (used in RC:KDTree) for d > 2

9
. As mentioned in Section

4.2, the vector-vector/vector-matrix multiplication can be really

fast in practice. For example, increasing the dimension (horizontal

axis) by 4× (2
4 − 26) increases the run time (vertical axis) by less

than 2× (instead of increasing run time by 16×). This is one of the
reasons for the (relatively) favorable d scaling of RPTree in Section

4.2. The O(d2) scaling of MatMul starts showing up for d > 2
9
.

In contrast, our un-optimized implementation of our proposed

schemes (CC_x for RC:KDTree and FF_x for FF:KDTree) suffers
from various inefficiencies:

• As mentioned in Section 4.2, we use a reference implemen-

tation of FFT instead of the optimized FFTW library
8
.

• We use the standard numpy random permutation (with fixed

seed) for the permutation operation in FF_x. This can be

significantly improved with a custom C++ implementation.

• Moreover, our operations (CC_x and FF_x in Table 5) switches

between low-level (C/C++) and high level (Python) signifi-

cantly more than the standard vector-vector/vector-matrix

operations, which comes with significant overheads as well:

– Something like Γx (in RR:KDTree) and w⊤x (in RPTree)
can be obtained by a single round trip between the high-

level Python layer and the low-level numpy implementa-

tions.

8
http://fftw.org

http://fftw.org


Method Aerial Corel FashMNIST GIST LetterReg. MNIST SIFT TinyImages

RPTree 0.040 ± 0.001 0.076 ± 0.004 0.038 ± 0.001 5.9e-4 ± 3e-5 0.139 ± 0.003 0.030 ± 0.000 6.53e-3 ± 12e-5 1.45e-3 ± 5e-5

SpGa:RPT(1/10) 0.040 ± 0.001 0.077 ± 0.001 0.039 ± 0.001 6.0e-4 ± 2e-5 0.135 ± 0.011 0.031 ± 0.001 6.55e-3 ± 11e-5 1.41e-3 ± 3e-5

SpGa:RPT(1/3) 0.041 ± 0.002 0.074 ± 0.002 0.039 ± 0.001 6.0e-4 ± 3e-5 0.141 ± 0.005 0.030 ± 0.000 6.50e-3 ± 8e-5 1.46e-3 ± 4e-5

SpRa:RPT(1/10) 0.041 ± 0.000 0.074 ± 0.001 0.039 ± 0.001 5.9e-4 ± 1e-5 0.138 ± 0.007 0.030 ± 0.001 6.53e-3 ± 9e-5 1.43e-3 ± 5e-5

SpRa:RPT(1/3) 0.042 ± 0.001 0.075 ± 0.003 0.039 ± 0.001 6.0e-4 ± 2e-5 0.139 ± 0.012 0.030 ± 0.001 6.62e-3 ± 10e-5 1.46e-3 ± 4e-5

RR:KDTree 0.041 ± 0.001 0.074 ± 0.002 0.039 ± 0.001 6.1e-4 ± 1e-5 0.144 ± 0.005 0.030 ± 0.001 6.54e-3 ± 8e-5 1.43e-3 ± 1e-5

RC:KDTree 0.042 ± 0.002 0.073 ± 0.003 0.039 ± 0.001 6.0e-4 ± 2e-5 0.137 ± 0.003 0.031 ± 0.001 6.51e-3 ± 10e-5 1.40e-3 ± 4e-5

FF:KDTree 0.039 ± 0.001 0.076 ± 0.003 0.037 ± 0.001 5.4e-4 ± 4e-5 0.134 ± 0.007 0.030 ± 0.000 6.36e-3 ± 15e-5 1.44e-3 ± 3e-5

Table 4: Area under the recall vs. precision curves presented in Figure 3 averaged over 5 runs for k-nearest-neighbor search
with k = 100 and the leaf size n0 = 100 for each tree for all the methods.

Label Operation Complexity Implementation (in Python) High-low round trips

HD_x HdDx O(d logd) ffht.fht(D * x) 2

MatMul Γx O(d2) np.dot(Γ, x) 1

CC_x Dx ⊛ γ O(d logd) np.fft.ifft(np.fft.fft(D * x) * np.fft.fft(γ)) 4

FF_x HdGΠHdDx O(d logd) ffht.fht(G * np.random.permutation(ffht.fht(D * x))) 5

Table 5: The details of the different preconditioning operations we have considered in Table 1 and implemented for the em-
pirical evaluation. Here x ∈ Rd with d = 2

l for some integer l > 0. np stands for the numpy linear algebra package in Python.
ffht is the FFHT package in the FALCONN-LIB library. The actual computation times of the implementations considered are
presented in Figure 5. Note that we cache the value of np.fft.fft(γ) instead of computing it for every circular convolution.

Figure 6: Tree index size scaling of RPTree, RC:KDTree and
FF:KDTreewith respect to the number of pointsn and dimen-
sions d .

– The Dx⊛γ operation (CC_x, Equation 4) requires 4 round

trips – assuming we precompute F(γ ), we need 1 for Dx ,
1 for F(Dx), 1 for F(Dx) ◦ F(y) and 1 final one for the

F−1(·) operation.
– The HdGΠHdDx operation (FF_x) requires 5 rounds trips.

However, FF_x is more efficient than the CC_x operation

mostly because of the AVX optimized FFHT library
9
for

the FWHT as opposed to the un-optimized implementa-

tion of FFT in numpy.

To create a level playing field between all these operations, we be-

lieve that all the preconditioning operations need to be completely

implemented in a low-level language (such as C/C++) and the pre-

conditioning operation can be computed in a single high-low level

round trip as in the case of the O(d2) matrix multiplication or the

O(d) dot product.

E TREE INDEX SIZE SCALING
The tree index size scaling is presented in Figure 6.

9
https://github.com/FALCONN-LIB/FFHT

https://github.com/FALCONN-LIB/FFHT
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